1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
use crate::num::Float;
use ndarray::Array2;
use ndarray_linalg::QRSquareInto;
pub fn prod_log<F>(x: F) -> F
where
F: Float,
{
if x == F::zero() {
return F::zero();
}
x * x.ln()
}
pub fn is_rank_deficient<F>(matrix: Array2<F>, eps: F) -> ndarray_linalg::error::Result<bool>
where
F: Float,
{
if matrix.ncols() != matrix.nrows() {
return Ok(true);
}
let (_, r) = matrix.qr_square_into()?;
let diag = r.into_diag();
for e in diag.into_iter() {
if F::from(e.abs()).unwrap() < eps {
return Ok(true);
}
}
Ok(false)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::array;
use approx::assert_abs_diff_eq;
#[test]
fn test_prod_log() {
assert_abs_diff_eq!(0., prod_log(0.));
let e: f64 = std::f64::consts::E;
assert_abs_diff_eq!(e, prod_log(e));
}
#[test]
fn test_rank_def() {
assert_eq!(true, is_rank_deficient(array![[0., 1.]], 0.).unwrap());
assert_eq!(
false,
is_rank_deficient(array![[0., 1.], [2., 0.]], f32::EPSILON as f64).unwrap()
);
assert_eq!(
true,
is_rank_deficient(array![[0., 1.], [0., 2.342]], f64::EPSILON).unwrap()
);
assert_eq!(
true,
is_rank_deficient(
array![[1., 1., 0.], [1., 0.5, 0.5], [1., 0.2, 0.8]],
f64::EPSILON
)
.unwrap()
);
}
}