1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
//! A rust library for performing GLM regression with data represented in //! [`ndarray`](file:///home/felix/Projects/ndarray-glm/target/doc/ndarray/index.html)s. //! The [`ndarray-linalg`](https://docs.rs/ndarray-linalg/) crate is used to allow //! optimization of linear algebra operations with BLAS. //! //! This crate is early alpha and may change rapidly. No guarantees can be made about //! the accuracy of the fits. //! //! At the moment the docs and CI are blocked by an upstream issue. For more detail see the README. //! //! # Examples: //! ``` //! use ndarray_glm::{array, Linear, ModelBuilder, standardize}; //! //! let data_y = array![0.3, 1.3, 0.7]; //! let data_x = array![[0.1, 0.2], [-0.4, 0.1], [0.2, 0.4]]; //! // The design matrix can optionally be standardized, where the mean of each independent //! // variable is subtracted and each is then divided by the standard deviation of that variable. //! let data_x = standardize(data_x); //! // The interface takes `ArrayView`s to allow for efficient passing of slices. //! let model = ModelBuilder::<Linear>::data(data_y.view(), data_x.view()).build().unwrap(); //! // L2 (ridge) regularization can be applied with l2_reg(). //! let fit = model.fit_options().l2_reg(1e-5).fit().unwrap(); //! // The result is a flat array with the first term as the intercept. //! println!("Fit result: {}", fit.result); //! ``` //! //! The canonical link function is used by default. An alternative link function can be //! specified as a type parameter to the response struct. //! ``` //! use ndarray_glm::{array, Logistic, logistic_link::Cloglog, ModelBuilder}; //! //! let data_y = array![true, false, false, true, true]; //! let data_x = array![[0.5, 0.2], [0.1, 0.3], [0.2, 0.6], [0.6, 0.3], [0.4, 0.4]]; //! let model = ModelBuilder::<Logistic<Cloglog>>::data(data_y.view(), data_x.view()).build().unwrap(); //! let fit = model.fit_options().l2_reg(1e-5).fit().unwrap(); //! println!("Fit result: {}", fit.result); //! ``` //! //! Feature summary: //! * Generic over floating-point type //! * Linear, logistic, Poisson, and binomial regression //! * L2 (ridge) regularization //! * Statistical tests of fit result //! * Alternative and custom link functions //! //! Requirements: //! See the README for dependency requirements. // enable const_generics if the binomial feature is used. This may be changed as the // benefits of const generic here are not large. #![cfg_attr(feature = "binomial", feature(const_generics))] #[doc(html_root_url = "https://docs.rs/crate/ndarray-glm")] pub mod error; mod fit; mod glm; mod irls; pub mod link; mod math; pub mod model; pub mod num; mod regularization; mod response; mod standardize; mod utility; // Import some common names into the top-level namespace #[cfg(feature = "binomial")] pub use response::binomial::Binomial; pub use { model::ModelBuilder, // re-export common structs from ndarray ndarray::{array, Array1, Array2, ArrayView1, ArrayView2}, response::logistic::link as logistic_link, response::{linear::Linear, logistic::Logistic, poisson::Poisson}, standardize::standardize, };