1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
//! utility functions for internal library use
use ndarray::{concatenate, Array1, Array2, ArrayView2, Axis};
use num_traits::{
identities::One,
{Float, FromPrimitive},
};
/// Prepend the input with a column of ones.
/// Used to incorporate a constant intercept term in a regression.
pub fn one_pad<T>(data: ArrayView2<T>) -> Array2<T>
where
T: Copy + One,
{
// create the ones column
let ones: Array2<T> = Array2::ones((data.nrows(), 1));
// This should be guaranteed to succeed since we are manually specifying the dimension
concatenate![Axis(1), ones, data]
}
/// Returns a standardization of a design matrix where rows are seperate
/// observations and columns are different dependent variables. Each quantity
/// has its mean subtracted and is then divided by the standard deviation.
/// The normalization by the standard deviation is not performed if there is only 1
/// observation, since such an operation is undefined.
pub fn standardize<F: Float>(mut design: Array2<F>) -> Array2<F>
where
F: Float + FromPrimitive + std::ops::DivAssign,
{
let n_obs: usize = design.nrows();
if n_obs >= 1 {
// subtract the mean
design = &design - &design.mean_axis(Axis(0)).expect("mean should succeed here");
}
if n_obs >= 2 {
// divide by the population standard deviation
let std: Array1<F> = design.std_axis(Axis(0), F::zero());
// design = &design / &std;
design.zip_mut_with(&std, |x, &sig| {
if sig > F::zero() {
*x /= sig;
}
})
}
design
}