1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
use crate::{
error::{RegressionError, RegressionResult},
glm::{DispersionType, Glm},
math::prod_log,
num::Float,
response::Response,
};
type BinDom = u16;
pub struct Binomial<const N: BinDom>;
impl<const N: BinDom> Response<Binomial<N>> for BinDom {
fn into_float<F: Float>(self) -> RegressionResult<F> {
F::from(self).ok_or_else(|| RegressionError::InvalidY(self.to_string()))
}
}
impl<const N: BinDom> Glm for Binomial<N> {
type Link = link::Logit;
const DISPERSED: DispersionType = DispersionType::NoDispersion;
fn log_partition<F: Float>(nat_par: F) -> F {
let n: F = F::from(N).unwrap();
n * num_traits::Float::exp(nat_par).ln_1p()
}
fn variance<F: Float>(mean: F) -> F {
let n_float: F = F::from(N).unwrap();
mean * (n_float - mean) / n_float
}
fn log_like_sat<F: Float>(y: F) -> F {
let n: F = F::from(N).unwrap();
prod_log(y) + prod_log(n - y) - prod_log(n)
}
}
pub mod link {
use super::*;
use crate::link::{Canonical, Link};
use num_traits::Float;
pub struct Logit {}
impl Canonical for Logit {}
impl<const N: BinDom> Link<Binomial<N>> for Logit {
fn func<F: Float>(y: F) -> F {
let n_float: F = F::from(N).unwrap();
Float::ln(y / (n_float - y))
}
fn func_inv<F: Float>(lin_pred: F) -> F {
let n_float: F = F::from(N).unwrap();
n_float / (F::one() + (-lin_pred).exp())
}
}
}
#[cfg(test)]
mod tests {
use super::Binomial;
use crate::{error::RegressionResult, model::ModelBuilder};
use approx::assert_abs_diff_eq;
use ndarray::array;
#[test]
fn bin_reg() -> RegressionResult<()> {
const N: u16 = 12;
let ln2 = f64::ln(2.);
let beta = array![0., 1.];
let data_x = array![[0.], [0.], [ln2], [ln2], [ln2]];
let data_y = array![5, 7, 9, 6, 9];
let model = ModelBuilder::<Binomial<N>>::data(&data_y, &data_x).build()?;
let fit = model.fit()?;
dbg!(&fit.result);
dbg!(&fit.n_iter);
assert_abs_diff_eq!(beta, fit.result, epsilon = 0.05 * f32::EPSILON as f64);
Ok(())
}
}