1use ndarray::{
5 Array, ArrayBase, ArrayView, Data, Dim, Dimension, IntoDimension, Ix, RawData, RemoveAxis,
6 SliceArg, SliceInfo, SliceInfoElem,
7};
8use num::traits::NumAssign;
9
10use crate::{
11 dilation::{IntoKernelWithDilation, KernelWithDilation},
12 padding::PaddingExt,
13 ConvMode, PaddingMode,
14};
15
16#[cfg(test)]
17mod tests;
18
19pub struct ExplicitConv<const N: usize> {
24 pub padding: [[usize; 2]; N],
25 pub strides: [usize; N],
26}
27
28impl<const N: usize> ConvMode<N> {
29 pub(crate) fn unfold<S>(self, kernel: &KernelWithDilation<S, N>) -> ExplicitConv<N>
30 where
31 S: ndarray::RawData,
32 Dim<[Ix; N]>: Dimension,
33 {
34 let kernel_dim = kernel.kernel.raw_dim();
35 let kernel_dim: [usize; N] = std::array::from_fn(|i|
36 kernel_dim[i] * kernel.dilation[i] - kernel.dilation[i] + 1);
38
39 match self {
40 ConvMode::Full => ExplicitConv {
41 padding: std::array::from_fn(|i| [kernel_dim[i] - 1; 2]),
42 strides: [1; N],
43 },
44 ConvMode::Same => ExplicitConv {
45 padding: std::array::from_fn(|i| {
46 let k_size = kernel_dim[i];
47 if k_size.is_multiple_of(2) {
48 [(k_size - 1) / 2 + 1, (k_size - 1) / 2]
49 } else {
50 [(k_size - 1) / 2; 2]
51 }
52 }),
53 strides: [1; N],
54 },
55 ConvMode::Valid => ExplicitConv {
56 padding: [[0; 2]; N],
57 strides: [1; N],
58 },
59 ConvMode::Custom { padding, strides } => ExplicitConv {
60 padding: padding.map(|pad| [pad; 2]),
61 strides,
62 },
63 ConvMode::Explicit { padding, strides } => ExplicitConv { padding, strides },
64 }
65 }
66}
67
68pub trait ConvExt<'a, T, S, SK, const N: usize>
79where
80 T: NumAssign + Copy,
81 S: RawData,
82 SK: RawData,
83{
84 fn conv(
111 &self,
112 kernel: impl IntoKernelWithDilation<'a, SK, N>,
113 conv_mode: ConvMode<N>,
114 padding_mode: PaddingMode<N, T>,
115 ) -> Result<Array<T, Dim<[Ix; N]>>, crate::Error<N>>;
116}
117
118impl<'a, T, S, SK, const N: usize> ConvExt<'a, T, S, SK, N> for ArrayBase<S, Dim<[Ix; N]>>
119where
120 T: NumAssign + Copy,
121 S: Data<Elem = T> + 'a,
122 SK: Data<Elem = T> + 'a,
123 Dim<[Ix; N]>: RemoveAxis,
124 [Ix; N]: IntoDimension<Dim = Dim<[Ix; N]>>,
125 SliceInfo<[SliceInfoElem; N], Dim<[Ix; N]>, Dim<[Ix; N]>>:
126 SliceArg<Dim<[Ix; N]>, OutDim = Dim<[Ix; N]>>,
127{
128 fn conv(
129 &self,
130 kernel: impl IntoKernelWithDilation<'a, SK, N>,
131 conv_mode: ConvMode<N>,
132 padding_mode: PaddingMode<N, T>,
133 ) -> Result<Array<T, Dim<[Ix; N]>>, crate::Error<N>> {
134 let kwd = kernel.into_kernel_with_dilation();
135
136 let self_raw_dim = self.raw_dim();
137 if self.shape().iter().product::<usize>() == 0 {
138 return Err(crate::Error::DataShape(self_raw_dim));
139 }
140
141 let kernel_raw_dim = kwd.kernel.raw_dim();
142 if kwd.kernel.shape().iter().product::<usize>() == 0 {
143 return Err(crate::Error::DataShape(kernel_raw_dim));
144 }
145
146 let kernel_raw_dim_with_dilation: [usize; N] =
147 std::array::from_fn(|i| kernel_raw_dim[i] * kwd.dilation[i] - kwd.dilation[i] + 1);
148
149 let cm = conv_mode.unfold(&kwd);
150 let pds = self.padding(padding_mode, cm.padding);
151
152 let pds_raw_dim = pds.raw_dim();
153 if !(0..N).all(|i| kernel_raw_dim_with_dilation[i] <= pds_raw_dim[i]) {
154 return Err(crate::Error::MismatchShape(
155 conv_mode,
156 kernel_raw_dim_with_dilation,
157 ));
158 }
159
160 let offset_list = kwd.gen_offset_list(pds.strides());
161
162 let output_shape: [usize; N] = std::array::from_fn(|i| {
163 (cm.padding[i][0] + cm.padding[i][1] + self_raw_dim[i]
164 - kernel_raw_dim_with_dilation[i])
165 / cm.strides[i]
166 + 1
167 });
168 let mut ret = Array::zeros(output_shape);
169
170 let shape: [usize; N] = std::array::from_fn(|i| ret.raw_dim()[i]);
171 let strides: [usize; N] =
172 std::array::from_fn(|i| cm.strides[i] * pds.strides()[i] as usize);
173
174 unsafe {
178 let p: *mut T = ret.as_mut_ptr();
180
181 let view = ArrayView::from_shape(
183 ndarray::ShapeBuilder::strides(shape, strides),
184 pds.as_slice().unwrap(),
185 )
186 .unwrap();
187
188 view.iter().enumerate().for_each(|(i, cur)| {
189 let mut tmp_res = T::zero();
190
191 offset_list.iter().for_each(|(tmp_offset, tmp_kernel)| {
192 tmp_res += *(cur as *const T).offset(*tmp_offset) * *tmp_kernel
193 });
194
195 *p.add(i) = tmp_res;
196 });
197 }
198
199 Ok(ret)
200 }
201}