ndarray_conv/conv/
mod.rs

1//! Provides convolution operations for `ndarray` arrays.
2//! Includes standard convolution and related utilities.
3
4use ndarray::{
5    Array, ArrayBase, ArrayView, Data, Dim, Dimension, IntoDimension, Ix, RawData, RemoveAxis,
6    SliceArg, SliceInfo, SliceInfoElem,
7};
8use num::traits::NumAssign;
9
10use crate::{
11    dilation::{IntoKernelWithDilation, KernelWithDilation},
12    padding::PaddingExt,
13    ConvMode, PaddingMode,
14};
15
16#[cfg(test)]
17mod tests;
18
19/// Represents explicit convolution parameters after unfolding from `ConvMode`.
20///
21/// This struct holds padding and strides information used directly
22/// by the convolution algorithm.
23pub struct ExplicitConv<const N: usize> {
24    pub padding: [[usize; 2]; N],
25    pub strides: [usize; N],
26}
27
28impl<const N: usize> ConvMode<N> {
29    pub(crate) fn unfold<S>(self, kernel: &KernelWithDilation<S, N>) -> ExplicitConv<N>
30    where
31        S: ndarray::RawData,
32        Dim<[Ix; N]>: Dimension,
33    {
34        let kernel_dim = kernel.kernel.raw_dim();
35        let kernel_dim: [usize; N] = std::array::from_fn(|i|
36                // k + (k - 1) * (d - 1)
37                kernel_dim[i] * kernel.dilation[i] - kernel.dilation[i] + 1);
38
39        match self {
40            ConvMode::Full => ExplicitConv {
41                padding: std::array::from_fn(|i| [kernel_dim[i] - 1; 2]),
42                strides: [1; N],
43            },
44            ConvMode::Same => ExplicitConv {
45                padding: std::array::from_fn(|i| {
46                    let k_size = kernel_dim[i];
47                    if k_size.is_multiple_of(2) {
48                        [(k_size - 1) / 2 + 1, (k_size - 1) / 2]
49                    } else {
50                        [(k_size - 1) / 2; 2]
51                    }
52                }),
53                strides: [1; N],
54            },
55            ConvMode::Valid => ExplicitConv {
56                padding: [[0; 2]; N],
57                strides: [1; N],
58            },
59            ConvMode::Custom { padding, strides } => ExplicitConv {
60                padding: padding.map(|pad| [pad; 2]),
61                strides,
62            },
63            ConvMode::Explicit { padding, strides } => ExplicitConv { padding, strides },
64        }
65    }
66}
67
68/// Extends `ndarray`'s `ArrayBase` with convolution operations.
69///
70/// This trait adds the `conv` method to `ArrayBase`, enabling
71/// standard convolution operations on N-dimensional arrays.
72///
73/// # Type Parameters
74///
75/// *   `T`: The numeric type of the array elements.
76/// *   `S`: The data storage type of the input array.
77/// *   `SK`: The data storage type of the kernel array.
78pub trait ConvExt<'a, T, S, SK, const N: usize>
79where
80    T: NumAssign + Copy,
81    S: RawData,
82    SK: RawData,
83{
84    /// Performs a standard convolution operation.
85    ///
86    /// This method convolves the input array with a given kernel,
87    /// using the specified convolution mode and padding.
88    ///
89    /// # Arguments
90    ///
91    /// *   `kernel`: The convolution kernel.
92    /// *   `conv_mode`: The convolution mode (`Full`, `Same`, `Valid`, `Custom`, `Explicit`).
93    /// *   `padding_mode`: The padding mode (`Zeros`, `Const`, `Reflect`, `Replicate`, `Circular`, `Custom`, `Explicit`).
94    ///
95    /// # Returns
96    ///
97    fn conv(
98        &self,
99        kernel: impl IntoKernelWithDilation<'a, SK, N>,
100        conv_mode: ConvMode<N>,
101        padding_mode: PaddingMode<N, T>,
102    ) -> Result<Array<T, Dim<[Ix; N]>>, crate::Error<N>>;
103}
104
105impl<'a, T, S, SK, const N: usize> ConvExt<'a, T, S, SK, N> for ArrayBase<S, Dim<[Ix; N]>>
106where
107    T: NumAssign + Copy,
108    S: Data<Elem = T> + 'a,
109    SK: Data<Elem = T> + 'a,
110    Dim<[Ix; N]>: RemoveAxis,
111    [Ix; N]: IntoDimension<Dim = Dim<[Ix; N]>>,
112    SliceInfo<[SliceInfoElem; N], Dim<[Ix; N]>, Dim<[Ix; N]>>:
113        SliceArg<Dim<[Ix; N]>, OutDim = Dim<[Ix; N]>>,
114{
115    fn conv(
116        &self,
117        kernel: impl IntoKernelWithDilation<'a, SK, N>,
118        conv_mode: ConvMode<N>,
119        padding_mode: PaddingMode<N, T>,
120    ) -> Result<Array<T, Dim<[Ix; N]>>, crate::Error<N>> {
121        let kwd = kernel.into_kernel_with_dilation();
122
123        let self_raw_dim = self.raw_dim();
124        if self.shape().iter().product::<usize>() == 0 {
125            return Err(crate::Error::DataShape(self_raw_dim));
126        }
127
128        let kernel_raw_dim = kwd.kernel.raw_dim();
129        if kwd.kernel.shape().iter().product::<usize>() == 0 {
130            return Err(crate::Error::DataShape(kernel_raw_dim));
131        }
132
133        let kernel_raw_dim_with_dilation: [usize; N] =
134            std::array::from_fn(|i| kernel_raw_dim[i] * kwd.dilation[i] - kwd.dilation[i] + 1);
135
136        let cm = conv_mode.unfold(&kwd);
137        let pds = self.padding(padding_mode, cm.padding);
138
139        let pds_raw_dim = pds.raw_dim();
140        if !(0..N).all(|i| kernel_raw_dim_with_dilation[i] <= pds_raw_dim[i]) {
141            return Err(crate::Error::MismatchShape(
142                conv_mode,
143                kernel_raw_dim_with_dilation,
144            ));
145        }
146
147        let offset_list = kwd.gen_offset_list(pds.strides());
148
149        let output_shape: [usize; N] = std::array::from_fn(|i| {
150            (cm.padding[i][0] + cm.padding[i][1] + self_raw_dim[i]
151                - kernel_raw_dim_with_dilation[i])
152                / cm.strides[i]
153                + 1
154        });
155        let mut ret = Array::zeros(output_shape);
156
157        let shape: [usize; N] = std::array::from_fn(|i| ret.raw_dim()[i]);
158        let strides: [usize; N] =
159            std::array::from_fn(|i| cm.strides[i] * pds.strides()[i] as usize);
160
161        // dbg!(&offset_list);
162        // dbg!(strides);
163
164        unsafe {
165            // use raw pointer to improve performance.
166            let p: *mut T = ret.as_mut_ptr();
167
168            // use ArrayView's iter without handle strides
169            let view = ArrayView::from_shape(
170                ndarray::ShapeBuilder::strides(shape, strides),
171                pds.as_slice().unwrap(),
172            )
173            .unwrap();
174
175            view.iter().enumerate().for_each(|(i, cur)| {
176                let mut tmp_res = T::zero();
177
178                offset_list.iter().for_each(|(tmp_offset, tmp_kernel)| {
179                    tmp_res += *(cur as *const T).offset(*tmp_offset) * *tmp_kernel
180                });
181
182                *p.add(i) = tmp_res;
183            });
184        }
185
186        Ok(ret)
187    }
188}