ndarray_conv/conv_fft/mod.rs
1//! Provides FFT-accelerated convolution operations.
2//!
3//! This module offers the `ConvFFTExt` trait, which extends `ndarray`
4//! with FFT-based convolution methods.
5
6use std::fmt::Debug;
7
8use ndarray::{
9 Array, ArrayBase, Data, Dim, IntoDimension, Ix, RawData, RemoveAxis, SliceArg, SliceInfo,
10 SliceInfoElem,
11};
12use num::traits::NumAssign;
13use rustfft::FftNum;
14
15use crate::{dilation::IntoKernelWithDilation, ConvMode, PaddingMode};
16
17mod good_size;
18mod padding;
19mod processor;
20
21// pub use fft::Processor;
22pub use processor::{get as get_processor, GetProcessor, Processor};
23
24// /// Represents a "baked" convolution operation.
25// ///
26// /// This struct holds pre-computed data for performing FFT-accelerated
27// /// convolutions, including the FFT size, FFT processor, scratch space,
28// /// and padding information. It's designed to optimize repeated
29// /// convolutions with the same kernel and settings.
30// pub struct Baked<T, SK, const N: usize>
31// where
32// T: NumAssign + Debug + Copy,
33// SK: RawData,
34// {
35// fft_size: [usize; N],
36// fft_processor: impl Processor<T>,
37// scratch: Vec<Complex<T>>,
38// cm: ExplicitConv<N>,
39// padding_mode: PaddingMode<N, T>,
40// kernel_raw_dim_with_dilation: [usize; N],
41// pds_raw_dim: [usize; N],
42// kernel_pd: Array<T, Dim<[Ix; N]>>,
43// _sk_hint: PhantomData<SK>,
44// }
45
46/// Extends `ndarray`'s `ArrayBase` with FFT-accelerated convolution operations.
47///
48/// This trait adds the `conv_fft` and `conv_fft_with_processor` methods to `ArrayBase`,
49/// enabling efficient FFT-based convolutions on N-dimensional arrays.
50///
51/// # Type Parameters
52///
53/// * `T`: The numeric type of the array elements. Must be a floating-point type that implements `FftNum`.
54/// * `S`: The data storage type of the input array.
55/// * `SK`: The data storage type of the kernel array.
56///
57/// # Methods
58///
59/// * `conv_fft`: Performs an FFT-accelerated convolution with default settings.
60/// * `conv_fft_with_processor`: Performs an FFT-accelerated convolution using a provided `Processor` instance, allowing for reuse of FFT plans and scratch space.
61/// * `conv_fft_bake`: Precomputes and stores necessary data for performing repeated convolutions in the form of `Baked`.
62/// * `conv_fft_with_baked`: Performs a convolution with the provided `Baked` data.
63///
64/// # Example
65///
66/// ```rust
67/// use ndarray::prelude::*;
68/// use ndarray_conv::{ConvFFTExt, ConvMode, PaddingMode};
69///
70/// let arr = array![[1., 2.], [3., 4.]];
71/// let kernel = array![[1., 0.], [0., 1.]];
72/// let result = arr.conv_fft(&kernel, ConvMode::Same, PaddingMode::Zeros).unwrap();
73/// ```
74///
75/// # Notes
76///
77/// FFT-based convolutions are generally faster for larger kernels but may have higher overhead for smaller kernels.
78pub trait ConvFFTExt<'a, T, InElem, S, SK, const N: usize>
79where
80 T: NumAssign + Copy + FftNum,
81 InElem: processor::GetProcessor<T, InElem> + Copy + NumAssign,
82 S: RawData,
83 SK: RawData,
84{
85 fn conv_fft(
86 &self,
87 kernel: impl IntoKernelWithDilation<'a, SK, N>,
88 conv_mode: ConvMode<N>,
89 padding_mode: PaddingMode<N, InElem>,
90 ) -> Result<Array<InElem, Dim<[Ix; N]>>, crate::Error<N>>;
91
92 fn conv_fft_with_processor(
93 &self,
94 kernel: impl IntoKernelWithDilation<'a, SK, N>,
95 conv_mode: ConvMode<N>,
96 padding_mode: PaddingMode<N, InElem>,
97 fft_processor: &mut impl Processor<T, InElem>,
98 ) -> Result<Array<InElem, Dim<[Ix; N]>>, crate::Error<N>>;
99
100 // fn conv_fft_bake(
101 // &self,
102 // kernel: impl IntoKernelWithDilation<'a, SK, N>,
103 // conv_mode: ConvMode<N>,
104 // padding_mode: PaddingMode<N, T>,
105 // ) -> Result<Baked<T, SK, N>, crate::Error<N>>;
106
107 // fn conv_fft_with_baked(&self, baked: &mut Baked<T, SK, N>) -> Array<T, Dim<[Ix; N]>>;
108}
109
110impl<'a, T, InElem, S, SK, const N: usize> ConvFFTExt<'a, T, InElem, S, SK, N>
111 for ArrayBase<S, Dim<[Ix; N]>>
112where
113 T: NumAssign + FftNum,
114 InElem: processor::GetProcessor<T, InElem> + NumAssign + Copy + Debug,
115 S: Data<Elem = InElem> + 'a,
116 SK: Data<Elem = InElem> + 'a,
117 [Ix; N]: IntoDimension<Dim = Dim<[Ix; N]>>,
118 SliceInfo<[SliceInfoElem; N], Dim<[Ix; N]>, Dim<[Ix; N]>>:
119 SliceArg<Dim<[Ix; N]>, OutDim = Dim<[Ix; N]>>,
120 Dim<[Ix; N]>: RemoveAxis,
121{
122 // fn conv_fft_bake(
123 // &self,
124 // kernel: impl IntoKernelWithDilation<'a, SK, N>,
125 // conv_mode: ConvMode<N>,
126 // padding_mode: PaddingMode<N, T>,
127 // ) -> Result<Baked<T, SK, N>, crate::Error<N>> {
128 // let mut fft_processor = Processor::default();
129
130 // let kwd = kernel.into_kernel_with_dilation();
131
132 // let data_raw_dim = self.raw_dim();
133 // if self.shape().iter().product::<usize>() == 0 {
134 // return Err(crate::Error::DataShape(data_raw_dim));
135 // }
136
137 // let kernel_raw_dim = kwd.kernel.raw_dim();
138 // if kwd.kernel.shape().iter().product::<usize>() == 0 {
139 // return Err(crate::Error::DataShape(kernel_raw_dim));
140 // }
141
142 // let kernel_raw_dim_with_dilation: [usize; N] =
143 // std::array::from_fn(|i| kernel_raw_dim[i] * kwd.dilation[i] - kwd.dilation[i] + 1);
144
145 // let cm = conv_mode.unfold(&kwd);
146
147 // let pds_raw_dim: [usize; N] =
148 // std::array::from_fn(|i| (data_raw_dim[i] + cm.padding[i][0] + cm.padding[i][1]));
149 // if !(0..N).all(|i| kernel_raw_dim_with_dilation[i] <= pds_raw_dim[i]) {
150 // return Err(crate::Error::MismatchShape(
151 // conv_mode,
152 // kernel_raw_dim_with_dilation,
153 // ));
154 // }
155
156 // let fft_size = good_size::compute::<N>(&std::array::from_fn(|i| {
157 // pds_raw_dim[i].max(kernel_raw_dim_with_dilation[i])
158 // }));
159
160 // let scratch = fft_processor.get_scratch(fft_size);
161
162 // let kernel_pd = padding::kernel(kwd, fft_size);
163
164 // Ok(Baked {
165 // fft_size,
166 // fft_processor,
167 // scratch,
168 // cm,
169 // padding_mode,
170 // kernel_raw_dim_with_dilation,
171 // pds_raw_dim,
172 // kernel_pd,
173 // _sk_hint: PhantomData,
174 // })
175 // }
176
177 // fn conv_fft_with_baked(&self, baked: &mut Baked<T, SK, N>) -> Array<T, Dim<[Ix; N]>> {
178 // let Baked {
179 // scratch,
180 // fft_processor,
181 // fft_size,
182 // cm,
183 // padding_mode,
184 // kernel_pd,
185 // kernel_raw_dim_with_dilation,
186 // pds_raw_dim,
187 // _sk_hint,
188 // } = baked;
189
190 // let mut data_pd = padding::data(self, *padding_mode, cm.padding, *fft_size);
191
192 // let mut data_pd_fft = fft_processor.forward_with_scratch(&mut data_pd, scratch);
193 // let kernel_pd_fft = fft_processor.forward_with_scratch(kernel_pd, scratch);
194
195 // data_pd_fft.zip_mut_with(&kernel_pd_fft, |d, k| *d *= *k);
196 // // let mul_spec = data_pd_fft * kernel_pd_fft;
197
198 // let output = fft_processor.backward(data_pd_fft);
199
200 // output.slice_move(unsafe {
201 // SliceInfo::new(std::array::from_fn(|i| SliceInfoElem::Slice {
202 // start: kernel_raw_dim_with_dilation[i] as isize - 1,
203 // end: Some((pds_raw_dim[i]) as isize),
204 // step: cm.strides[i] as isize,
205 // }))
206 // .unwrap()
207 // })
208 // }
209
210 fn conv_fft(
211 &self,
212 kernel: impl IntoKernelWithDilation<'a, SK, N>,
213 conv_mode: ConvMode<N>,
214 padding_mode: PaddingMode<N, InElem>,
215 ) -> Result<Array<InElem, Dim<[Ix; N]>>, crate::Error<N>> {
216 let mut p = InElem::get_processor();
217 self.conv_fft_with_processor(kernel, conv_mode, padding_mode, &mut p)
218 }
219
220 fn conv_fft_with_processor(
221 &self,
222 kernel: impl IntoKernelWithDilation<'a, SK, N>,
223 conv_mode: ConvMode<N>,
224 padding_mode: PaddingMode<N, InElem>,
225 fft_processor: &mut impl Processor<T, InElem>,
226 ) -> Result<Array<InElem, Dim<[Ix; N]>>, crate::Error<N>> {
227 let kwd = kernel.into_kernel_with_dilation();
228
229 let data_raw_dim = self.raw_dim();
230 if self.shape().iter().product::<usize>() == 0 {
231 return Err(crate::Error::DataShape(data_raw_dim));
232 }
233
234 let kernel_raw_dim = kwd.kernel.raw_dim();
235 if kwd.kernel.shape().iter().product::<usize>() == 0 {
236 return Err(crate::Error::DataShape(kernel_raw_dim));
237 }
238
239 let kernel_raw_dim_with_dilation: [usize; N] =
240 std::array::from_fn(|i| kernel_raw_dim[i] * kwd.dilation[i] - kwd.dilation[i] + 1);
241
242 let cm = conv_mode.unfold(&kwd);
243
244 let pds_raw_dim: [usize; N] =
245 std::array::from_fn(|i| data_raw_dim[i] + cm.padding[i][0] + cm.padding[i][1]);
246 if !(0..N).all(|i| kernel_raw_dim_with_dilation[i] <= pds_raw_dim[i]) {
247 return Err(crate::Error::MismatchShape(
248 conv_mode,
249 kernel_raw_dim_with_dilation,
250 ));
251 }
252
253 let fft_size = good_size::compute::<N>(&std::array::from_fn(|i| {
254 pds_raw_dim[i].max(kernel_raw_dim_with_dilation[i])
255 }));
256
257 let mut data_pd = padding::data(self, padding_mode, cm.padding, fft_size);
258 let mut kernel_pd = padding::kernel(kwd, fft_size);
259
260 let mut data_pd_fft = fft_processor.forward(&mut data_pd);
261 let kernel_pd_fft = fft_processor.forward(&mut kernel_pd);
262
263 data_pd_fft.zip_mut_with(&kernel_pd_fft, |d, k| *d *= *k);
264 // let mul_spec = data_pd_fft * kernel_pd_fft;
265
266 let output = fft_processor.backward(&mut data_pd_fft);
267
268 let output = output.slice_move(unsafe {
269 SliceInfo::new(std::array::from_fn(|i| SliceInfoElem::Slice {
270 start: kernel_raw_dim_with_dilation[i] as isize - 1,
271 end: Some((pds_raw_dim[i]) as isize),
272 step: cm.strides[i] as isize,
273 }))
274 .unwrap()
275 });
276
277 Ok(output)
278 }
279}
280
281#[cfg(test)]
282mod tests;