1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use std::fmt::Debug;

use ndarray::{
    Array, ArrayBase, Data, Dim, IntoDimension, Ix, RawData, RemoveAxis, SliceArg, SliceInfo,
    SliceInfoElem,
};
use num::traits::NumAssign;
use rustfft::FftNum;

use crate::{dilation::IntoKernelWithDilation, ConvMode, PaddingMode};

mod fft;
mod good_size;
mod padding;

pub trait ConvFFTExt<'a, T, S, SK, const N: usize>
where
    T: FftNum + NumAssign,
    S: RawData,
    SK: RawData,
{
    fn conv_fft(
        &self,
        kernel: impl IntoKernelWithDilation<'a, SK, N>,
        conv_mode: ConvMode<N>,
        padding_mode: PaddingMode<N, T>,
    ) -> Result<Array<T, Dim<[Ix; N]>>, crate::Error<N>>;
}

impl<'a, T, S, SK, const N: usize> ConvFFTExt<'a, T, S, SK, N> for ArrayBase<S, Dim<[Ix; N]>>
where
    T: NumAssign + Debug + FftNum,
    S: Data<Elem = T> + 'a,
    SK: Data<Elem = T> + 'a,
    [Ix; N]: IntoDimension<Dim = Dim<[Ix; N]>>,
    SliceInfo<[SliceInfoElem; N], Dim<[Ix; N]>, Dim<[Ix; N]>>:
        SliceArg<Dim<[Ix; N]>, OutDim = Dim<[Ix; N]>>,
    Dim<[Ix; N]>: RemoveAxis,
{
    fn conv_fft(
        &self,
        kernel: impl IntoKernelWithDilation<'a, SK, N>,
        conv_mode: ConvMode<N>,
        padding_mode: PaddingMode<N, T>,
    ) -> Result<Array<T, Dim<[Ix; N]>>, crate::Error<N>> {
        let kwd = kernel.into_kernel_with_dilation();

        let data_raw_dim = self.raw_dim();
        if self.shape().iter().product::<usize>() == 0 {
            return Err(crate::Error::DataShape(data_raw_dim));
        }

        let kernel_raw_dim = kwd.kernel.raw_dim();
        if kwd.kernel.shape().iter().product::<usize>() == 0 {
            return Err(crate::Error::DataShape(kernel_raw_dim));
        }

        let kernel_raw_dim_with_dilation: [usize; N] =
            std::array::from_fn(|i| kernel_raw_dim[i] * kwd.dilation[i] - kwd.dilation[i] + 1);

        let cm = conv_mode.unfold(&kwd);

        let pds_raw_dim: [usize; N] =
            std::array::from_fn(|i| (data_raw_dim[i] + cm.padding[i][0] + cm.padding[i][1]));
        if !(0..N).all(|i| kernel_raw_dim_with_dilation[i] <= pds_raw_dim[i]) {
            return Err(crate::Error::MismatchShape(
                conv_mode,
                kernel_raw_dim_with_dilation,
            ));
        }

        let fft_size = good_size::compute::<N>(&std::array::from_fn(|i| {
            pds_raw_dim[i].max(kernel_raw_dim_with_dilation[i])
        }));

        let mut data_pd = padding::data(self, padding_mode, cm.padding, fft_size);
        let mut kernel_pd = padding::kernel(kwd, fft_size);

        let mut fft = fft::Processor::default();

        let mut data_pd_fft = fft.forward(&mut data_pd);
        let kernel_pd_fft = fft.forward(&mut kernel_pd);

        data_pd_fft.zip_mut_with(&kernel_pd_fft, |d, k| *d *= *k);
        // let mul_spec = data_pd_fft * kernel_pd_fft;

        let output = fft.backward(data_pd_fft);

        let output = output.slice_move(unsafe {
            SliceInfo::new(std::array::from_fn(|i| SliceInfoElem::Slice {
                start: kernel_raw_dim_with_dilation[i] as isize - 1,
                end: Some((pds_raw_dim[i]) as isize),
                step: cm.strides[i] as isize,
            }))
            .unwrap()
        });

        Ok(output)
    }
}

#[cfg(test)]
mod tests {
    use ndarray::array;

    use crate::{dilation::WithDilation, ConvExt};

    use super::*;

    #[test]
    fn correct_size() {
        let arr = array![[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]];
        let kernel = array![[1, 0], [3, 1]];

        let res_normal = arr
            .conv(&kernel, ConvMode::Same, PaddingMode::Replicate)
            .unwrap();
        // dbg!(res_normal);

        let res_fft = arr
            .map(|&x| x as f64)
            .conv_fft(
                &kernel.map(|&x| x as f64),
                ConvMode::Same,
                PaddingMode::Replicate,
            )
            .unwrap()
            .map(|x| x.round() as i32);
        // dbg!(res_fft);

        assert_eq!(res_normal, res_fft);
    }

    #[test]
    fn conv_fft() {
        let arr = array![[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
        let kernel = array![
            [[1, 1, 1], [1, 1, 1], [1, 1, 1]],
            [[1, 1, 1], [1, 1, 1], [1, 1, 1]],
        ];

        let res_normal = arr
            .conv(&kernel, ConvMode::Same, PaddingMode::Zeros)
            .unwrap();
        // dbg!(res_normal);

        let res_fft = arr
            .map(|&x| x as f32)
            .conv_fft(
                &kernel.map(|&x| x as f32),
                ConvMode::Same,
                PaddingMode::Zeros,
            )
            .unwrap()
            .map(|x| x.round() as i32);
        // dbg!(res_fft);

        assert_eq!(res_normal, res_fft);

        //

        let arr = array![[1, 2], [3, 4]];
        let kernel = array![[1, 0], [3, 1]];

        let res_normal = arr
            .conv(
                kernel.with_dilation(2),
                ConvMode::Custom {
                    padding: [3, 3],
                    strides: [2, 2],
                },
                PaddingMode::Replicate,
            )
            .unwrap();
        // dbg!(res_normal);

        let res_fft = arr
            .map(|&x| x as f64)
            .conv_fft(
                kernel.map(|&x| x as f64).with_dilation(2),
                ConvMode::Custom {
                    padding: [3, 3],
                    strides: [2, 2],
                },
                PaddingMode::Replicate,
            )
            .unwrap()
            .map(|x| x.round() as i32);
        // dbg!(res_fft);

        assert_eq!(res_normal, res_fft);

        //

        let arr = array![1, 2, 3, 4, 5, 6];
        let kernel = array![1, 1, 1, 1];

        let res_normal = arr
            .conv(kernel.with_dilation(2), ConvMode::Same, PaddingMode::Zeros)
            .unwrap();
        // dbg!(&res_normal);

        let res_fft = arr
            .map(|&x| x as f32)
            .conv_fft(
                kernel.map(|&x| x as f32).with_dilation(2),
                ConvMode::Same,
                PaddingMode::Zeros,
            )
            .unwrap()
            .map(|x| x.round() as i32);
        // dbg!(res_fft);

        assert_eq!(res_normal, res_fft);
    }
}