1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
//! Implementation of the NBLAST algorithm for quantifying neurons' morphological similarity.
//! Originally published in
//! [Costa et al. (2016)](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961245/)
//! and implemented as part of the
//! [NeuroAnatomy Toolbox](http://natverse.org/).
//!
//! # Algorithm
//!
//! Each neuron is passed in as a point cloud sample (the links between the points are not required).
//! A tangent vector is calculated for each point, based on its location and that of its 4 nearest neighbors.
//! To query the similarity of neuron `Q` to neuron `T`:
//!
//! - Take a point and its associated tangent in `Q`
//!   - Find the nearest point in `T`, and its associated tangent
//!   - Compute the distance between the two points
//!   - Compute the absolute dot product of the two tangents
//!   - Apply some empirically-derived function to the (distance, dot_product) tuple
//!     - As published, this is the log probabity ratio of any pair belonging to closely related or unrelated neurons
//! - Repeat for all points, summing the results
//!
//! The result is not easily comparable:
//! it is highly dependent on the size of the point cloud
//! and is not commutative, i.e. `f(Q, T) != f(T, Q)`.
//!
//! To make queries between two pairs of neurons comparable,
//! the result can be normalized by the "self-hit" score of the query, i.e. `f(Q, Q)`.
//!
//! To make the result commutative, the forward `f(Q, T)` and backward `f(T, Q)` scores can be combined in some way.
//! This library supports several means (arithmetic, harmonic, and geometric), the minimum, and the maximum.
//! The choice will depend on the application.
//! This can be applied after the scores are normalized.
//!
//! More information on the algorithm can be found
//! [here](http://jefferislab.org/si/nblast).
//!
//! # Usage
//!
//! The [QueryNeuron](trait.QueryNeuron.html) and [TargetNeuron](trait.TargetNeuron.html) traits
//! define types which can be compared with NBLAST.
//! All `TargetNeuron`s are also `QueryNeuron`s.
//!
//! [QueryPointTangents](struct.QueryPointTangents.html) and
//! [RStarPointTangents](struct.RStarPointTangents.html) implement these, respectively.
//! Both can be created with pre-calculated tangents, or calculate them on instantiation.
//!
//! The [NblastArena](struct.NblastArena.html) contains a collection of `TargetNeuron`s
//! and a function to apply to pointwise (distance, absolute dot product) pairs to generate
//! a score for that point match, for convenient many-to-many comparisons.
//! A pre-calculated table of point match scores can be converted into a function with [table_to_fn](fn.table_to_fn.html).
use nalgebra::base::{Matrix3, Unit, Vector3};
use rstar::primitives::PointWithData;
use rstar::RTree;
use std::collections::{HashMap, HashSet};

#[cfg(feature = "parallel")]
use rayon::prelude::*;

pub use nalgebra;

// NOTE: will panic if this is changed due to use of Matrix3x5
// const N_NEIGHBORS: usize = 5;

/// Floating point precision type used internally
pub type Precision = f64;
pub type Point3 = [Precision; 3];
pub type Normal3 = Unit<Vector3<Precision>>;

type PointWithIndex = PointWithData<usize, Point3>;

fn geometric_mean(a: Precision, b: Precision) -> Precision {
    (a.max(0.0) * b.max(0.0)).sqrt()
}

#[derive(Copy, Clone, Debug)]
pub struct TangentAlpha {
    pub tangent: Normal3,
    pub alpha: Precision,
}

impl TangentAlpha {
    fn new_from_points<'a>(points: impl Iterator<Item = &'a Point3>) -> Self {
        let inertia = calc_inertia(points);
        let eig = inertia.symmetric_eigen();
        let mut sum = 0.0;
        let mut vals: Vec<_> = eig
            .eigenvalues
            .iter()
            .enumerate()
            .map(|(idx, v)| {
                sum += v;
                (idx, v)
            })
            .collect();
        vals.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
        let alpha = (vals[0].1 - vals[1].1) / sum;

        // ? new_unchecked
        let tangent = Unit::new_normalize(eig.eigenvectors.column(vals[0].0).into());

        Self { tangent, alpha }
    }
}

/// Enumeration of methods to ensure that queries are symmetric/ commutative
/// (i.e. f(q, t) = f(t, q)).
/// Specific applications will require different methods.
/// Geometric and harmonic means bound the output to be >= 0.0.
/// Geometric mean may work best with non-normalized queries.
/// Min may work if an unknown one of the query and target is incomplete.
pub enum Symmetry {
    ArithmeticMean,
    GeometricMean,
    HarmonicMean,
    Min,
    Max,
}

fn apply_symmetry(
    symmetry: &Symmetry,
    query_score: Precision,
    target_score: Precision,
) -> Precision {
    match symmetry {
        Symmetry::ArithmeticMean => (query_score + target_score) / 2.0,
        Symmetry::GeometricMean => geometric_mean(query_score, target_score),
        Symmetry::HarmonicMean => {
            if query_score.max(0.0) * target_score.max(0.0) == 0.0 {
                0.0
            } else {
                2.0 / (1.0 / query_score + 1.0 / target_score)
            }
        }
        Symmetry::Min => query_score.min(target_score),
        Symmetry::Max => query_score.max(target_score),
    }
}

/// The result of comparing two (point, tangent) tuples.
/// Contains the Euclidean distance between the points,
/// and the absolute dot product of the (unit) tangents,
/// i.e. the absolute cosine of the angle between them.
#[derive(Debug, Clone, Copy)]
pub struct DistDot {
    pub dist: Precision,
    pub dot: Precision,
}

impl Default for DistDot {
    fn default() -> Self {
        Self {
            dist: 0.0,
            dot: 1.0,
        }
    }
}

pub trait Neuron {
    /// Number of points in the neuron.
    fn len(&self) -> usize;

    /// Whether the number of points is 0.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return an owned copy of the points present in the neuron.
    /// The order is not guaranteed, but is consistent with
    /// [tangents](#method.tangents).
    fn points(&self) -> Vec<Point3>;

    /// Return an owned copy of the unit tangents present in the neuron.
    /// The order is not guaranteed, but is consistent with
    /// [points](#method.points).
    fn tangents(&self) -> Vec<Normal3>;

    /// Return an owned copy of the alpha values for points in the neuron.
    /// The order is consistent with [points](#method.points)
    /// and [tangents](#method.tangents).
    fn alphas(&self) -> Vec<Precision>;
}

/// Trait for objects which can be used as queries
/// (not necessarily as targets) with NBLAST.
/// See [TargetNeuron](trait.TargetNeuron.html).
pub trait QueryNeuron: Neuron {
    /// Calculate the raw NBLAST score by comparing this neuron to
    /// the given target neuron, using the given score function.
    /// The score function is applied to each point match distance and summed.
    fn query(
        &self,
        target: &impl TargetNeuron,
        score_fn: &impl Fn(&DistDot) -> Precision,
        use_alpha: bool,
    ) -> Precision;

    /// The raw NBLAST score if this neuron was compared with itself using the given score function.
    /// Used for normalisation.
    fn self_hit(&self, score_fn: &impl Fn(&DistDot) -> Precision, use_alpha: bool) -> Precision;
}

fn subtract_points(p1: &Point3, p2: &Point3) -> Point3 {
    let mut result = [0.0; 3];
    for ((rref, v1), v2) in result.iter_mut().zip(p1).zip(p2) {
        *rref = v1 - v2;
    }
    result
}

fn center_points<'a>(points: impl Iterator<Item = &'a Point3>) -> impl Iterator<Item = Point3> {
    let mut points_vec = Vec::default();
    let mut means: Point3 = [0.0, 0.0, 0.0];
    for pt in points {
        points_vec.push(*pt);
        for (sum, v) in means.iter_mut().zip(pt.iter()) {
            *sum += v;
        }
    }

    for val in means.iter_mut() {
        *val /= points_vec.len() as Precision;
    }
    let subtract = move |p| subtract_points(&p, &means);
    points_vec.into_iter().map(subtract)
}

fn dot(a: &[Precision], b: &[Precision]) -> Precision {
    a.iter()
        .zip(b.iter())
        .fold(0.0, |sum, (ax, bx)| sum + ax * bx)
}

/// Calculate inertia from iterator of points.
/// This is an implementation of matrix * matrix.transpose(),
/// to sidestep the fixed-size constraints of linalg's built-in classes.
/// Only calculates the lower triangle and diagonal.
fn calc_inertia<'a>(points: impl Iterator<Item = &'a Point3>) -> Matrix3<Precision> {
    let mut xs = Vec::default();
    let mut ys = Vec::default();
    let mut zs = Vec::default();
    for point in center_points(points) {
        xs.push(point[0]);
        ys.push(point[1]);
        zs.push(point[2]);
    }
    Matrix3::new(
        dot(&xs, &xs),
        0.0,
        0.0,
        dot(&ys, &xs),
        dot(&ys, &ys),
        0.0,
        dot(&zs, &xs),
        dot(&zs, &ys),
        dot(&zs, &zs),
    )
}

fn points_to_rtree(
    points: impl Iterator<Item = impl std::borrow::Borrow<Point3>>,
) -> Result<RTree<PointWithIndex>, &'static str> {
    Ok(RTree::bulk_load(
        points
            .enumerate()
            .map(|(idx, point)| PointWithIndex::new(idx, *point.borrow()))
            .collect(),
    ))
}

fn points_to_rtree_tangents_alphas(
    points: impl Iterator<Item = impl std::borrow::Borrow<Point3>> + ExactSizeIterator + Clone,
    k: usize,
) -> Result<(RTree<PointWithIndex>, Vec<TangentAlpha>), &'static str> {
    if points.len() < k {
        return Err("Too few points to generate tangents");
    }
    let rtree = points_to_rtree(points.clone())?;
    let tangents_alphas = points
        .map(|p| {
            TangentAlpha::new_from_points(
                rtree
                    .nearest_neighbor_iter(p.borrow())
                    .take(k)
                    .map(|pwd| pwd.position()),
            )
        })
        .collect();

    Ok((rtree, tangents_alphas))
}

/// Minimal struct to use as the query (not the target) of an NBLAST
/// comparison.
/// Equivalent to "dotprops" in the reference implementation.
#[derive(Clone)]
pub struct PointsTangentsAlphas {
    /// Locations of points in point cloud.
    points: Vec<Point3>,
    /// For each point in the cloud, a unit-length vector and a colinearity metric.
    tangents_alphas: Vec<TangentAlpha>,
}

impl PointsTangentsAlphas {
    /// Calculates tangents from the given points.
    /// Note that this constructs a spatial index in order to calculate the tangents,
    /// and then throws it away: you may as well use a [TargetNeuron](trait.TargetNeuron.html)
    /// type, with regards to performance.
    /// `k` is the number of points tangents will be calculated with,
    /// and includes the point itself.
    pub fn new(points: Vec<Point3>, k: usize) -> Result<Self, &'static str> {
        points_to_rtree_tangents_alphas(points.iter(), k).map(|(_, tangents_alphas)| Self {
            points,
            tangents_alphas,
        })
    }
}

impl Neuron for PointsTangentsAlphas {
    fn len(&self) -> usize {
        self.points.len()
    }

    fn points(&self) -> Vec<Point3> {
        self.points.clone()
    }

    fn tangents(&self) -> Vec<Normal3> {
        self.tangents_alphas.iter().map(|ta| ta.tangent).collect()
    }

    fn alphas(&self) -> Vec<Precision> {
        self.tangents_alphas.iter().map(|ta| ta.alpha).collect()
    }
}

impl QueryNeuron for PointsTangentsAlphas {
    fn query(
        &self,
        target: &impl TargetNeuron,
        score_fn: &impl Fn(&DistDot) -> Precision,
        use_alpha: bool,
    ) -> Precision {
        let mut score_total: Precision = 0.0;

        for (q_pt, q_ta) in self.points.iter().zip(self.tangents_alphas.iter()) {
            let alpha = if use_alpha { Some(q_ta.alpha) } else { None };
            score_total += score_fn(&target.nearest_match_dist_dot(q_pt, &q_ta.tangent, alpha));
        }
        score_total
    }

    fn self_hit(&self, score_fn: &impl Fn(&DistDot) -> Precision, use_alpha: bool) -> Precision {
        if use_alpha {
            self.tangents_alphas
                .iter()
                .map(|ta| {
                    score_fn(&DistDot {
                        dist: 0.0,
                        dot: ta.alpha,
                    })
                })
                .fold(0.0, |total, s| total + s)
        } else {
            score_fn(&DistDot {
                dist: 0.0,
                dot: 1.0,
            }) * self.len() as Precision
        }
    }
}

/// Trait describing a neuron which can be the target (or the query)
/// of an NBLAST match.
pub trait TargetNeuron: QueryNeuron {
    /// For a given point and tangent vector,
    /// get the distance to its nearest point in the target, and the absolute dot product
    /// with that neighbor's tangent (i.e. absolute cosine of the angle, as they are both unit-length).
    fn nearest_match_dist_dot(
        &self,
        point: &Point3,
        tangent: &Normal3,
        alpha: Option<Precision>,
    ) -> DistDot;
}

/// Target neuron using an [R*-tree](https://en.wikipedia.org/wiki/R*_tree) for spatial queries.
#[derive(Clone)]
pub struct RStarTangentsAlphas {
    rtree: RTree<PointWithIndex>,
    tangents_alphas: Vec<TangentAlpha>,
}

impl RStarTangentsAlphas {
    /// Calculate tangents from constructed R*-tree.
    /// `k` is the number of points to calculate each tangent with.
    pub fn new<T: std::borrow::Borrow<Point3>>(
        points: impl IntoIterator<
            Item = T,
            IntoIter = impl Iterator<Item = T> + ExactSizeIterator + Clone,
        >,
        k: usize,
    ) -> Result<Self, &'static str> {
        points_to_rtree_tangents_alphas(points.into_iter(), k).map(|(rtree, tangents_alphas)| {
            RStarTangentsAlphas {
                rtree,
                tangents_alphas,
            }
        })
    }

    /// Use pre-calculated tangents.
    pub fn new_with_tangents_alphas<T: std::borrow::Borrow<Point3>>(
        points: impl IntoIterator<
            Item = T,
            IntoIter = impl Iterator<Item = T> + ExactSizeIterator + Clone,
        >,
        tangents_alphas: Vec<TangentAlpha>,
    ) -> Result<Self, &'static str> {
        points_to_rtree(points.into_iter()).map(|rtree| RStarTangentsAlphas {
            rtree,
            tangents_alphas,
        })
    }
}

impl Neuron for RStarTangentsAlphas {
    fn len(&self) -> usize {
        self.tangents_alphas.len()
    }

    fn points(&self) -> Vec<Point3> {
        let mut unsorted: Vec<&PointWithIndex> = self.rtree.iter().collect();
        unsorted.sort_by_key(|pwd| pwd.data);
        unsorted.into_iter().map(|pwd| *pwd.position()).collect()
    }

    fn tangents(&self) -> Vec<Normal3> {
        self.tangents_alphas.iter().map(|ta| ta.tangent).collect()
    }

    fn alphas(&self) -> Vec<Precision> {
        self.tangents_alphas.iter().map(|ta| ta.alpha).collect()
    }
}

impl QueryNeuron for RStarTangentsAlphas {
    fn query(
        &self,
        target: &impl TargetNeuron,
        score_fn: &impl Fn(&DistDot) -> Precision,
        use_alpha: bool,
    ) -> Precision {
        let mut score_total: Precision = 0.0;
        for q_pt_idx in self.rtree.iter() {
            let tangent_alpha = self.tangents_alphas[q_pt_idx.data];
            let alpha = if use_alpha {
                Some(tangent_alpha.alpha)
            } else {
                None
            };
            let dd =
                target.nearest_match_dist_dot(q_pt_idx.position(), &tangent_alpha.tangent, alpha);
            let score = score_fn(&dd);
            score_total += score;
        }
        score_total
    }

    fn self_hit(&self, score_fn: &impl Fn(&DistDot) -> Precision, use_alpha: bool) -> Precision {
        if use_alpha {
            self.tangents_alphas
                .iter()
                .map(|ta| {
                    score_fn(&DistDot {
                        dist: 0.0,
                        dot: ta.alpha,
                    })
                })
                .fold(0.0, |total, s| total + s)
        } else {
            score_fn(&DistDot {
                dist: 0.0,
                dot: 1.0,
            }) * self.len() as Precision
        }
    }
}

impl TargetNeuron for RStarTangentsAlphas {
    fn nearest_match_dist_dot(
        &self,
        point: &Point3,
        tangent: &Normal3,
        alpha: Option<Precision>,
    ) -> DistDot {
        self.rtree
            .nearest_neighbor_iter_with_distance(point)
            .next()
            .map(|(element, dist2)| {
                let ta = self.tangents_alphas[element.data];
                let raw_dot = ta.tangent.dot(tangent).abs();
                let dot = match alpha {
                    Some(a) => raw_dot * geometric_mean(a, ta.alpha),
                    None => raw_dot,
                };
                DistDot {
                    dist: dist2.sqrt(),
                    dot,
                }
            })
            .expect("impossible")
    }
}

// ? consider using nalgebra's Point3 in PointWithIndex, for consistency
// ^ can't implement rstar::Point for nalgebra::geometry::Point3 because of orphan rules
// TODO: replace Precision with float generic

/// Given the upper bounds of a number of bins, find which bin the value falls into.
/// Values outside of the range fall into the bottom or top bin.
fn find_bin_binary(value: Precision, upper_bounds: &[Precision]) -> usize {
    let raw = match upper_bounds.binary_search_by(|bound| bound.partial_cmp(&value).unwrap()) {
        Ok(v) => v + 1,
        Err(v) => v,
    };
    let highest = upper_bounds.len() - 1;
    if raw > highest {
        highest
    } else {
        raw
    }
}

/// Convert an empirically-derived table mapping pointwise distance and tangent absolute dot products
/// to pointwise scores into a function which can be passed to neuron queries.
/// These scores are then summed across all points in the query to give the raw NBLAST score.
///
/// Cells are passed in dist-major order
/// i.e. if the original table had distance bins in the left margin
/// and dot product bins on the top margin,
/// the cells should be given in row-major order.
///
/// Each bin is identified by its upper bound:
/// the lower bound is implicitly the previous bin's upper bound, or zero.
/// The output is constrained to the limits of the table.
pub fn table_to_fn(
    dist_thresholds: Vec<Precision>,
    dot_thresholds: Vec<Precision>,
    cells: Vec<Precision>,
) -> impl Fn(&DistDot) -> Precision {
    if dist_thresholds.len() * dot_thresholds.len() != cells.len() {
        panic!("Number of cells in table do not match number of columns/rows");
    }

    move |dd: &DistDot| -> Precision {
        let col_idx = find_bin_binary(dd.dot, &dot_thresholds);
        let row_idx = find_bin_binary(dd.dist, &dist_thresholds);

        let lin_idx = row_idx * dot_thresholds.len() + col_idx;
        cells[lin_idx]
    }
}

#[derive(Clone)]
struct NeuronSelfHit<N: QueryNeuron> {
    neuron: N,
    self_hit: Precision,
    self_hit_alpha: Precision,
}

impl<N: QueryNeuron> NeuronSelfHit<N> {
    fn score(&self, use_alpha: bool) -> Precision {
        if use_alpha {
            self.self_hit_alpha
        } else {
            self.self_hit
        }
    }
}

/// Struct for caching a number of neurons for multiple comparable NBLAST queries.
#[derive(Clone)]
pub struct NblastArena<N, F>
where
    N: TargetNeuron,
    F: Fn(&DistDot) -> Precision,
{
    neurons_scores: Vec<NeuronSelfHit<N>>,
    score_fn: F,
}

pub type NeuronIdx = usize;

// TODO: caching strategy
impl<N, F> NblastArena<N, F>
where
    N: TargetNeuron + Sync,
    F: Fn(&DistDot) -> Precision + Sync,
{
    pub fn new(score_fn: F) -> Self {
        Self {
            neurons_scores: Vec::default(),
            score_fn,
        }
    }

    fn next_id(&self) -> NeuronIdx {
        self.neurons_scores.len()
    }

    /// Returns an index which is then used to make queries.
    pub fn add_neuron(&mut self, neuron: N) -> NeuronIdx {
        let idx = self.next_id();
        let self_hit = neuron.self_hit(&self.score_fn, false);
        let self_hit_alpha = neuron.self_hit(&self.score_fn, true);
        self.neurons_scores.push(NeuronSelfHit {
            neuron,
            self_hit,
            self_hit_alpha,
        });
        idx
    }

    /// Make a single query using the given indexes.
    /// `normalize` divides the result by the self-hit score of the query neuron.
    /// `symmetry`, if `Some`, also calculates the reverse score
    /// (normalizing it if necessary), and then applies a function to ensure
    /// that the query is symmetric/ commutative.
    pub fn query_target(
        &self,
        query_idx: NeuronIdx,
        target_idx: NeuronIdx,
        normalize: bool,
        symmetry: &Option<Symmetry>,
        use_alpha: bool,
    ) -> Option<Precision> {
        // ? consider separate methods
        let q = self.neurons_scores.get(query_idx)?;
        let t = self.neurons_scores.get(target_idx)?;
        let mut score = q.neuron.query(&t.neuron, &self.score_fn, use_alpha);
        if normalize {
            score /= q.score(use_alpha)
        }
        match symmetry {
            Some(s) => {
                let mut score2 = t.neuron.query(&q.neuron, &self.score_fn, use_alpha);
                if normalize {
                    score2 /= t.score(use_alpha);
                }
                Some(apply_symmetry(s, score, score2))
            }
            _ => Some(score),
        }
    }

    /// Make many queries using the Cartesian product of the query and target indices.
    /// `threads` configures parallelisation if the `parallel` feature is enabled:
    /// `None` is done in serial, and for `Some(n)`, `n` is passed to
    /// [rayon::ThreadPoolBuilder::num_threads](https://docs.rs/rayon/1.3.0/rayon/struct.ThreadPoolBuilder.html#method.num_threads).
    ///
    /// See [query_target](#method.query_target) for details on `normalize` and `symmetry`.
    pub fn queries_targets(
        &self,
        query_idxs: &[NeuronIdx],
        target_idxs: &[NeuronIdx],
        normalize: bool,
        symmetry: &Option<Symmetry>,
        use_alpha: bool,
        threads: Option<usize>,
    ) -> HashMap<(NeuronIdx, NeuronIdx), Precision> {
        let mut out = HashMap::with_capacity(query_idxs.len() * target_idxs.len());
        let mut out_keys: HashSet<(NeuronIdx, NeuronIdx)> = HashSet::default();
        let mut jobs: HashSet<(NeuronIdx, NeuronIdx)> = HashSet::default();
        for q_idx in query_idxs {
            for t_idx in target_idxs {
                let key = (*q_idx, *t_idx);
                if q_idx == t_idx {
                    if let Some(ns) = self.neurons_scores.get(*q_idx) {
                        out.insert(key, if normalize { 1.0 } else { ns.score(use_alpha) });
                    };
                    continue;
                }
                out_keys.insert(key);
                jobs.insert(key);
                if symmetry.is_some() {
                    jobs.insert((*t_idx, *q_idx));
                }
            }
        }

        let jobs_vec: Vec<_> = jobs.into_iter().collect();
        let raw = pairs_to_raw(self, &jobs_vec, normalize, use_alpha, threads);

        for key in out_keys.into_iter() {
            if let Some(forward) = raw.get(&key) {
                if let Some(s) = symmetry {
                    // ! this applies symmetry twice if idx is in both input and output,
                    // but it's a cheap function
                    if let Some(backward) = raw.get(&(key.1, key.0)) {
                        out.insert(key, apply_symmetry(s, *forward, *backward));
                    }
                } else {
                    out.insert(key, *forward);
                }
            }
        }
        out
    }

    pub fn self_hit(&self, idx: NeuronIdx, use_alpha: bool) -> Option<Precision> {
        self.neurons_scores.get(idx).map(|n| n.score(use_alpha))
    }

    /// Query every neuron against every other neuron.
    /// See [queries_targets](#method.queries_targets) for more details.
    pub fn all_v_all(
        &self,
        normalize: bool,
        symmetry: &Option<Symmetry>,
        use_alpha: bool,
        threads: Option<usize>,
    ) -> HashMap<(NeuronIdx, NeuronIdx), Precision> {
        let idxs: Vec<NeuronIdx> = (0..self.len()).collect();
        self.queries_targets(&idxs, &idxs, normalize, symmetry, use_alpha, threads)
    }

    pub fn is_empty(&self) -> bool {
        self.neurons_scores.is_empty()
    }

    /// Number of neurons in the arena.
    pub fn len(&self) -> usize {
        self.neurons_scores.len()
    }

    pub fn points(&self, idx: NeuronIdx) -> Option<Vec<Point3>> {
        self.neurons_scores.get(idx).map(|n| n.neuron.points())
    }

    pub fn tangents(&self, idx: NeuronIdx) -> Option<Vec<Normal3>> {
        self.neurons_scores.get(idx).map(|n| n.neuron.tangents())
    }

    pub fn alphas(&self, idx: NeuronIdx) -> Option<Vec<Precision>> {
        self.neurons_scores.get(idx).map(|n| n.neuron.alphas())
    }
}

fn pairs_to_raw_serial<N, F>(
    arena: &NblastArena<N, F>,
    pairs: &[(NeuronIdx, NeuronIdx)],
    normalize: bool,
    use_alpha: bool,
) -> HashMap<(NeuronIdx, NeuronIdx), Precision>
where
    N: TargetNeuron + Sync,
    F: Fn(&DistDot) -> Precision + Sync,
{
    pairs
        .iter()
        .filter_map(|(q_idx, t_idx)| {
            arena
                .query_target(*q_idx, *t_idx, normalize, &None, use_alpha)
                .map(|s| ((*q_idx, *t_idx), s))
        })
        .collect()
}

#[cfg(not(feature = "parallel"))]
fn pairs_to_raw<N, F>(
    arena: &NblastArena<N, F>,
    pairs: &[(NeuronIdx, NeuronIdx)],
    normalize: bool,
    use_alpha: bool,
    threads: Option<usize>,
) -> HashMap<(NeuronIdx, NeuronIdx), Precision>
where
    N: TargetNeuron + Sync,
    F: Fn(&DistDot) -> Precision + Sync,
{
    pairs_to_raw_serial(arena, pairs, normalize, use_alpha)
}

#[cfg(feature = "parallel")]
fn pairs_to_raw<N, F>(
    arena: &NblastArena<N, F>,
    pairs: &[(NeuronIdx, NeuronIdx)],
    normalize: bool,
    use_alpha: bool,
    threads: Option<usize>,
) -> HashMap<(NeuronIdx, NeuronIdx), Precision>
where
    N: TargetNeuron + Sync,
    F: Fn(&DistDot) -> Precision + Sync,
{
    if let Some(t) = threads {
        let pool = rayon::ThreadPoolBuilder::new()
            .num_threads(t)
            .build()
            .unwrap();
        pool.install(|| {
            pairs
                .par_iter()
                .filter_map(|(q_idx, t_idx)| {
                    arena
                        .query_target(*q_idx, *t_idx, normalize, &None, use_alpha)
                        .map(|s| ((*q_idx, *t_idx), s))
                })
                .collect()
        })
    } else {
        pairs_to_raw_serial(arena, pairs, normalize, use_alpha)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    const EPSILON: Precision = 0.001;
    const N_NEIGHBORS: usize = 5;

    fn add_points(a: &Point3, b: &Point3) -> Point3 {
        let mut out = [0., 0., 0.];
        for (idx, (x, y)) in a.iter().zip(b.iter()).enumerate() {
            out[idx] = x + y;
        }
        out
    }

    fn make_points(offset: &Point3, step: &Point3, count: usize) -> Vec<Point3> {
        let mut out = Vec::default();
        out.push(*offset);

        for _ in 0..count - 1 {
            let to_push = add_points(out.last().unwrap(), step);
            out.push(to_push);
        }

        out
    }

    #[test]
    fn construct() {
        let points = make_points(&[0., 0., 0.], &[1., 0., 0.], 10);
        PointsTangentsAlphas::new(points.clone(), N_NEIGHBORS).expect("Query construction failed");
        RStarTangentsAlphas::new(&points, N_NEIGHBORS).expect("Target construction failed");
    }

    fn is_close(val1: Precision, val2: Precision) -> bool {
        (val1 - val2).abs() < EPSILON
    }

    fn assert_close(val1: Precision, val2: Precision) {
        if !is_close(val1, val2) {
            panic!("Not close:\n\t{:?}\n\t{:?}", val1, val2);
        }
    }

    #[test]
    fn unit_tangents_eig() {
        let (points, _) = tangent_data();
        let tangent = TangentAlpha::new_from_points(points.iter()).tangent;
        assert_close(tangent.dot(&tangent), 1.0)
    }

    fn equivalent_tangents(tan1: &Normal3, tan2: &Normal3) -> bool {
        is_close(tan1.dot(tan2).abs(), 1.0)
    }

    fn tangent_data() -> (Vec<Point3>, Normal3) {
        // calculated from implementation known to be correct
        let expected = Unit::new_normalize(Vector3::from_column_slice(&[
            -0.939_392_2,
            0.313_061_82,
            0.139_766_18,
        ]));

        // points in first row of data/dotprops/ChaMARCM-F000586_seg002.csv
        let points = vec![
            [
                329.679_962_158_203,
                72.718_803_405_761_7,
                31.028_469_085_693_4,
            ],
            [
                328.647_399_902_344,
                73.046_119_689_941_4,
                31.537_061_691_284_2,
            ],
            [
                335.219_879_150_391,
                70.710_479_736_328_1,
                30.398_145_675_659_2,
            ],
            [
                332.611_389_160_156,
                72.322_929_382_324_2,
                30.887_334_823_608_4,
            ],
            [
                331.770_782_470_703,
                72.434_440_612_793,
                31.169_372_558_593_8,
            ],
        ];

        (points, expected)
    }

    // #[test]
    // #[ignore]
    // fn test_tangent_svd() {
    //     let (points, expected) = tangent_data();
    //     let tangent = points_to_tangent_svd(points.iter()).expect("Failed to create tangent");
    //     println!("tangent is {:?}", tangent);
    //     println!("  expected {:?}", expected);
    //     assert!(equivalent_tangents(&tangent, &expected))
    // }

    #[test]
    fn test_tangent_eig() {
        let (points, expected) = tangent_data();
        let tangent = TangentAlpha::new_from_points(points.iter()).tangent;
        if !equivalent_tangents(&tangent, &expected) {
            panic!(
                "Non-equivalent tangents:\n\t{:?}\n\t{:?}",
                tangent, expected
            )
        }
    }

    /// dist_thresholds, dot_thresholds, values
    fn score_mat() -> (Vec<Precision>, Vec<Precision>, Vec<Precision>) {
        let dists = vec![10.0, 20.0, 30.0, 40.0, 50.0];
        let dots = vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
        let mut values = vec![];
        let n_values = dots.len() * dists.len();
        for v in 0..n_values {
            values.push(v as Precision);
        }
        (dists, dots, values)
    }

    #[test]
    fn test_score_fn() {
        let (dists, dots, values) = score_mat();
        let func = table_to_fn(dists, dots, values);
        assert_close(
            func(&DistDot {
                dist: 0.0,
                dot: 0.0,
            }),
            0.0,
        );
        assert_close(
            func(&DistDot {
                dist: 0.0,
                dot: 0.1,
            }),
            1.0,
        );
        assert_close(
            func(&DistDot {
                dist: 11.0,
                dot: 0.0,
            }),
            10.0,
        );
        assert_close(
            func(&DistDot {
                dist: 55.0,
                dot: 0.0,
            }),
            40.0,
        );
        assert_close(
            func(&DistDot {
                dist: 55.0,
                dot: 10.0,
            }),
            49.0,
        );
        assert_close(
            func(&DistDot {
                dist: 15.0,
                dot: 0.15,
            }),
            11.0,
        );
    }

    // #[test]
    // fn test_find_bin_linear() {
    //     let dots = vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
    //     assert_eq!(find_bin_linear(0.0, &dots), 0);
    //     assert_eq!(find_bin_linear(0.15, &dots), 1);
    //     assert_eq!(find_bin_linear(0.95, &dots), 9);
    //     assert_eq!(find_bin_linear(-10.0, &dots), 0);
    //     assert_eq!(find_bin_linear(10.0, &dots), 9);
    //     assert_eq!(find_bin_linear(0.1, &dots), 1);
    // }

    #[test]
    fn test_find_bin_binary() {
        let dots = vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];
        assert_eq!(find_bin_binary(0.0, &dots), 0);
        assert_eq!(find_bin_binary(0.15, &dots), 1);
        assert_eq!(find_bin_binary(0.95, &dots), 9);
        assert_eq!(find_bin_binary(-10.0, &dots), 0);
        assert_eq!(find_bin_binary(10.0, &dots), 9);
        assert_eq!(find_bin_binary(0.1, &dots), 1);
    }

    #[test]
    fn score_function() {
        let dist_thresholds = vec![1.0, 2.0];
        let dot_thresholds = vec![0.5, 1.0];
        let cells = vec![1.0, 2.0, 4.0, 8.0];

        let score_fn = table_to_fn(dist_thresholds, dot_thresholds, cells);

        let q_points = make_points(&[0., 0., 0.], &[1.0, 0.0, 0.0], 10);
        let query = PointsTangentsAlphas::new(q_points.clone(), N_NEIGHBORS)
            .expect("Query construction failed");
        let query2 = RStarTangentsAlphas::new(&q_points, N_NEIGHBORS).expect("Construction failed");
        let target = RStarTangentsAlphas::new(
            &make_points(&[0.5, 0., 0.], &[1.1, 0., 0.], 10),
            N_NEIGHBORS,
        )
        .expect("Construction failed");

        assert_close(
            query.query(&target, &score_fn, false),
            query2.query(&target, &score_fn, false),
        );
        assert_close(
            query.self_hit(&score_fn, false),
            query2.self_hit(&score_fn, false),
        );
        let score = query.query(&query2, &score_fn, false);
        let self_hit = query.self_hit(&score_fn, false);
        println!("score: {:?}, self-hit {:?}", score, self_hit);
        assert_close(
            query.query(&query2, &score_fn, false),
            query.self_hit(&score_fn, false),
        );
    }

    #[test]
    fn arena() {
        let dist_thresholds = vec![1.0, 2.0];
        let dot_thresholds = vec![0.5, 1.0];
        let cells = vec![1.0, 2.0, 4.0, 8.0];

        let score_fn = table_to_fn(dist_thresholds, dot_thresholds, cells);

        let query =
            RStarTangentsAlphas::new(&make_points(&[0., 0., 0.], &[1., 0., 0.], 10), N_NEIGHBORS)
                .expect("Construction failed");
        let target = RStarTangentsAlphas::new(
            &make_points(&[0.5, 0., 0.], &[1.1, 0., 0.], 10),
            N_NEIGHBORS,
        )
        .expect("Construction failed");

        let mut arena = NblastArena::new(score_fn);
        let q_idx = arena.add_neuron(query);
        let t_idx = arena.add_neuron(target);

        let no_norm = arena
            .query_target(q_idx, t_idx, false, &None, false)
            .expect("should exist");
        let self_hit = arena
            .query_target(q_idx, q_idx, false, &None, false)
            .expect("should exist");

        assert!(
            arena
                .query_target(q_idx, t_idx, true, &None, false)
                .expect("should exist")
                - no_norm / self_hit
                < EPSILON
        );
        assert_eq!(
            arena.query_target(q_idx, t_idx, false, &Some(Symmetry::ArithmeticMean), false),
            arena.query_target(t_idx, q_idx, false, &Some(Symmetry::ArithmeticMean), false),
        );

        let out =
            arena.queries_targets(&[q_idx, t_idx], &[t_idx, q_idx], false, &None, false, None);
        assert_eq!(out.len(), 4);
    }

    fn test_symmetry(symmetry: &Symmetry, a: Precision, b: Precision) {
        assert_close(
            apply_symmetry(symmetry, a, b),
            apply_symmetry(symmetry, b, a),
        )
    }

    fn test_symmetry_multiple(symmetry: &Symmetry) {
        for (a, b) in vec![(0.3, 0.7), (0.0, 0.7), (-1.0, 0.7), (100.0, 1000.0)].into_iter() {
            test_symmetry(symmetry, a, b);
        }
    }

    #[test]
    fn symmetry_arithmetic() {
        test_symmetry_multiple(&Symmetry::ArithmeticMean)
    }

    #[test]
    fn symmetry_harmonic() {
        test_symmetry_multiple(&Symmetry::HarmonicMean)
    }

    #[test]
    fn symmetry_geometric() {
        test_symmetry_multiple(&Symmetry::GeometricMean)
    }

    #[test]
    fn symmetry_min() {
        test_symmetry_multiple(&Symmetry::Min)
    }

    #[test]
    fn symmetry_max() {
        test_symmetry_multiple(&Symmetry::Max)
    }
}