1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
pub mod default;
pub mod diff;
pub mod iter;
pub mod node;
pub mod sub_tree;
use std::mem;
use std::{fmt::Debug, hash::Hash, ops::Index};
use crate::path::PathIDX;
use self::node::TreeNode;
use super::path::Path;
macro_rules! ok_or_return {
( $e:expr, $r:expr ) => {
match $e {
Some(x) => x,
None => return $r,
}
};
}
type NodeIDX = usize;
/// Tree structure with generic node and branch data
/// Each node is linked to its children via branches.
/// # Building trees
/// Trees can be built in several ways using (chainable) insertion methods.
/// ## Inserting data
/// Data can be added or overwritten at a specified location via [insert].
/// ```rust
/// use nb_tree::prelude::Tree;
/// let mut tree: Tree<usize, String> = Tree::new();
/// // Insert at root (None reflects the creation of a new node)
/// assert_eq!(tree.insert(&"/".into(), 0), Ok(None));
/// assert_eq!(tree.insert(&"/a".into(), 1), Ok(None));
/// assert_eq!(tree.insert(&"/b".into(), 2), Ok(None));
/// assert_eq!(tree.insert(&"/b/c".into(), 3), Ok(None));
/// // One can't insert below an inexistent node with [insert]
/// // Use [insert_extend] for this
/// assert_eq!(tree.insert(&"/a/x/z".into(), 12), Err("/a".into()));
/// ```
/// A shorthand exists for chaining insertions
/// ```rust
/// use nb_tree::prelude::Tree;
/// let mut tree: Tree<usize, String> = Tree::new();
/// tree.i("/", 0)
/// .i("/a", 1)
/// .i("/a/b", 2)
/// .i("/a/c", 3)
/// .i("/d", 4);
/// ```
/// Note that [i] panics if the insertion fails.
///
/// For node data types that are [Default], [insert_extend] can be used to build
/// intermediary nodes with default data between the last existing node of the
/// given [Path] in the [Tree] and the one to insert
/// ```rust
/// use nb_tree::prelude::Tree;
/// let mut tree: Tree<usize, String> = Tree::new();
/// tree.insert_extend(&"/a/b/c/x/y/z".into(), 1000000);
/// assert_eq!(tree.values().len(), 7);
/// ```
/// [insert_extend] returns the old value if any.
/// If the node did not exist, it returns the default value of the node type.
/// ## Removing data
/// Subtrees can be removed from a tree.
/// [remove_sub_tree] removes the subtree whom root is pointed at by the given [Path]
/// ```rust
/// use nb_tree::prelude::Tree;
/// let mut tree: Tree<usize, String> = Tree::new();
/// tree.i("/", 0)
/// .i("/a", 1)
/// .i("/a/b", 2);
/// tree.remove_sub_tree(&"/a".into());
/// assert_eq!(tree.values().len(), 1);
/// ```
/// [remove_sub_tree_trim] also trims out parent nodes containing the default value
/// ```rust
/// use nb_tree::prelude::Tree;
/// let mut tree: Tree<Option<usize>, String> = Tree::new();
/// tree.insert(&"a".into(), Some(1));
/// tree.insert_extend(&"/a/b/c/i/j/k/x/y/z".into(), Some(1000000));
/// // [remove_sub_tree] only removes the subtree
/// tree.remove_sub_tree(&"/a/b/c/i/j/k".into());
/// assert_eq!(tree.values().len(), 7);
/// // [remove_sub_tree_trim] also removes the parent nodes containing `None`
/// tree.remove_sub_tree_trim(&"/a/b/c".into());
/// // Only the node at "/a" remains, containing non default data
/// assert_eq!(tree.values().len(), 1);
/// ```
/// # Diffing and applying Diffs
/// Tree differentials can be applied to a tree via [apply] and [apply_extend].
/// Differentials (diffs) contain the difference between two trees.
/// This can be useful to save differences between two trees and use them
/// as patches for instance.
///
/// Diffs are trees with for each node a potential Before and Now value,
/// representing the values of two Before and Now trees compared
/// against each other.
/// Their type is `Tree<(Option<N>, Option<N>), B>`
/// where each Before and Now N values are wrapped in an Option to represent the
/// potential absence of an equivalent node in the other tree.
/// They form a tuple wrapped in an other Option which allows for diffs
/// together in a tuple
/// # Examples
/// # Data structure
#[derive(Debug, Default)]
pub struct Tree<N, B>
where
N: Debug + PartialEq,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
/// The first node is the tree's root
/// Nodes are added and removed through `insert()` and `remove()` only
nodes: Vec<TreeNode<N, B>>,
/// Nodes removed from the tree
/// These indexes will be reused later upon inserting new nodes via `insert()`, and `remove()` adds them to the vec
removed: Vec<NodeIDX>,
}
pub type TreeBuilder<N, B> = Tree<Option<N>, B>;
pub type DiffTree<N, B> = Tree<(Option<N>, Option<N>), B>;
impl<N, B> Clone for Tree<N, B>
where
N: Clone + Debug + PartialEq,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
fn clone(&self) -> Self {
Self {
nodes: self.nodes.clone(),
removed: self.removed.clone(),
}
}
}
impl<N, B> Index<&Path<B>> for Tree<N, B>
where
N: Debug + PartialEq,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
type Output = N;
fn index(&self, index: &Path<B>) -> &Self::Output {
self.get(index).unwrap()
}
}
impl<N, B> PartialEq for Tree<N, B>
where
N: Debug + PartialEq,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
fn eq(&self, other: &Self) -> bool {
(self.is_empty() && other.is_empty())
|| (!self.is_empty()
&& !other.is_empty()
&& self.is_sub_tree_eq(self.get_root_idx(), other, other.get_root_idx()))
}
}
impl<N, B> Eq for Tree<N, B>
where
N: Debug + PartialEq + Eq,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
}
impl<N, B> Tree<N, B>
where
N: Debug + PartialEq,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
/// Creates a new empty tree
pub fn new() -> Self {
Self {
nodes: Vec::new(),
removed: Default::default(),
}
}
/// Returns the index of the node pointed to by the given [path]
/// If the node doesn't exist, it returns the index of the closest existing node in the tree and the index of the inexistent child in [path].
/// If the tree is empty, None is returned.
fn get_idx(
&self,
path: &Path<B>,
from_idx: Option<NodeIDX>,
) -> Result<NodeIDX, Option<(NodeIDX, PathIDX)>> {
if self.is_empty() {
return Err(None);
}
path.iter().enumerate().try_fold(
from_idx.unwrap_or(self.get_root_idx()),
|node_idx, (path_idx, branch)| {
self.nodes[node_idx]
.children
.get(branch)
.cloned()
.ok_or(Some((node_idx, path_idx)))
},
)
}
/// Returns a reference to the value of the node at the given [path]
pub fn get(&self, path: &Path<B>) -> Result<&N, Option<Path<B>>> {
Ok(&self.nodes[self
.get_idx(path, None)
.map_err(|r| r.map(|(_, v)| path.path_to(v)))?]
.value)
}
pub fn get_root(&self) -> Option<&N> {
if self.is_empty() {
None
} else {
Some(&self.nodes[0].value)
}
}
/// Protection against direct root node access (self.nodes[0]) although it got removed
fn get_root_idx(&self) -> NodeIDX {
debug_assert!(!self.is_empty());
0
}
/// Returns a vector of the index of every node along the given [path]
/// If a node doesn't exist, the vector up until this node is returned as well as the index of the inexistent child in [path].
/// If the tree is empty, None is returned.
fn get_path_idxs(&self, path: &Path<B>) -> Result<Vec<NodeIDX>, Option<(Vec<NodeIDX>, usize)>> {
if self.is_empty() {
return Err(None);
}
path.iter().enumerate().try_fold(
vec![self.get_root_idx()],
|mut node_idx, (path_idx, branch)| {
node_idx.push(
self.nodes[*node_idx.last().unwrap()]
.children
.get(&branch)
.cloned()
//NOTE: No way to do without the cloning? (E0505)
.ok_or(Some((node_idx.clone(), path_idx)))?,
);
Ok(node_idx)
},
)
}
/// # Warning
/// It does not check for index validity.
fn is_sub_tree_eq(&self, idx_s: usize, o: &Self, idx_o: usize) -> bool {
let ns = &self.nodes[idx_s];
let no = &o.nodes[idx_o];
ns.value == no.value
&& ns.children.len() == no.children.len()
&& ns
.children
.keys()
.find(|attr| {
!self.is_sub_tree_eq(
*ok_or_return!(ns.children.get(attr), false),
o,
*ok_or_return!(no.children.get(attr), false),
)
})
.is_none()
}
// pub fn navigate() -> TreeNavigation {
// (up, down(child), get(path))
// }
/// Inserts a value at the given [path]
/// Returns the existing value if any.
/// Insertions can be done on any existing node ([path] points to an existing node) or on children of existing nodes ([path] points to an inexistent immediate child of an existing node).
/// Insertions cannot be done if [path] points to a node further away from the existing tree as it cannot close the gap between the last existing node and the new one to insert.
/// In this case the operation will fail and the [Path] to the closest existing node will be returned.
///
/// # Examples
///
/// ```rust
/// use nb_tree::prelude::Tree;
/// let mut tree: Tree<_, String> = Tree::new();
/// // Set root
/// assert_eq!(tree.insert(&"/".into(), 0), Ok(None));
/// // Append node
/// assert_eq!(tree.insert(&"/a".into(), 1), Ok(None));
/// // Overwrite existing node
/// assert_eq!(tree.insert(&"/a".into(), 2), Ok(Some(1)));
/// // Leave tree
/// assert_eq!(tree.insert(&"/a/b/c".into(), 2), Err("/a".into()));
/// ```
pub fn insert(&mut self, path: &Path<B>, value: N) -> Result<Option<N>, Path<B>> {
let mut path = path.clone();
if let Some(child) = path.pop_leaf() {
self.insert_at(
self.get_idx(&path, None)
.map_err(|r| path.path_to(r.unwrap_or((0, 0)).1))?,
child,
value,
)
.map(|r| r.err())
} else {
Ok(self.insert_root(value))
}
}
pub fn insert_root(&mut self, value: N) -> Option<N> {
if self.nodes.is_empty() {
// Initialize the tree with a root node
self.nodes.push(value.into());
None
} else if self.removed.last() == Some(&0) {
// Reinsert the removed node
self.removed.pop();
self.removed
.append(&mut self.nodes[0].children.values().cloned().collect());
Some(mem::replace(&mut self.nodes[0], value.into()).value)
} else {
// The root should not have been removed
debug_assert!(!self.removed.contains(&0));
// Replace the current value
Some(mem::replace(&mut self.nodes[0].value, value))
}
}
/// Inserts a value as the [child] node of the given parent
/// # Warning
/// Does not check the validity of [parent_idx].
fn insert_at(
&mut self,
parent_idx: NodeIDX,
child: B,
value: N,
) -> Result<Result<NodeIDX, N>, Path<B>> {
// Child exists?
if let Some(child_idx) = self.nodes[parent_idx].children.get(&child).cloned() {
Ok(Err(mem::replace(&mut self.nodes[child_idx].value, value)))
} else {
// Get a node
let idx = if let Some(idx) = self.removed.pop() {
// Use a removed one
self.removed
.append(&mut self.nodes[idx].children.values().cloned().collect());
self.nodes[idx] = TreeNode::from(value);
self.nodes[parent_idx].children.insert(child, idx);
idx
} else {
let idx = self.nodes.len();
// Extend the vec
self.nodes.push(TreeNode::from(value));
//NOTE: Any way to do without the variable? (E0502)
self.nodes[parent_idx].children.insert(child, idx);
idx
};
Ok(Ok(idx))
}
}
/// Chainable insertion
/// Calls `insert` and returns a mutable reference to self
/// # Panics
/// Panics if the insertion fails
pub fn i(&mut self, path: impl Into<Path<B>>, value: N) -> &mut Self {
let ph: Path<B> = path.into();
self.insert(&ph, value)
.expect(&format!("Could not insert into the tree at {:?}", &ph));
self
}
/// Removes the sub tree at the given [path] from the tree
/// If the root node is not found, it returns the path to the closest existing node, or None if the tree is empty.
/// # Examples
/// ```rust
/// use nb_tree::prelude::Tree;
/// let mut tree1: Tree<_, String> = Tree::new();
/// tree1.insert(&"/".into(), 0);
/// tree1.insert(&"/a".into(), 1);
/// tree1.insert(&"/a".into(), 2);
/// tree1.insert(&"/b".into(), 3);
/// let mut tree2 = tree1.clone();
///
/// // Add a branch to tree2
/// tree2.insert(&"/c".into(), 4);
/// tree2.insert(&"/c/d".into(), 5);
///
/// // Remove the branch
/// tree2.remove_sub_tree(&"/c".into());
/// assert_eq!(tree1, tree2);
/// ```
pub fn remove_sub_tree(&mut self, path: &Path<B>) -> Result<(), Option<Path<B>>> {
let mut path = path.clone();
if self.is_empty() {
Err(None)
} else if let Some(child) = path.pop_leaf() {
// Remove a node
let parent_idx = self
.get_idx(&path, None)
.map_err(|r| r.map(|(_, v)| path.path_to(v)))?;
self.remove_sub_tree_at(parent_idx, child)
.map(|_| ())
.ok_or(Some(path))
} else {
// Root is being removed
self.nodes.clear();
self.removed.clear();
Ok(())
}
}
/// Removes the sub tree at the [child] of the given parent node
/// # Warning
/// Does not check [parent_idx]'s validity
fn remove_sub_tree_at(&mut self, parent_idx: NodeIDX, child: B) -> Option<()> {
let idx = self.nodes[parent_idx].children.remove(&child)?;
self.removed.push(idx);
Some(())
}
/// Returns a vector of all values and their position relative to each other
/// The first value of the tuple is the root item's, followed by a vector of [TreeTraversal] items.
/// Each one of the vector's items contains the value of the described node as well as its position relative to the previous node.
pub fn flat<'a>(&'a self) -> Option<(&'a N, Vec<TreeTraversalNode<'a, N, B>>)> {
fn flat_rec<'a, N, B>(
up: usize,
nodes: &'a Vec<TreeNode<N, B>>,
idx: usize,
branch: &'a B,
) -> (Vec<TreeTraversalNode<'a, N, B>>, usize)
where
N: Debug,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
let mut f = nodes[idx].children.iter().fold(
(
vec![TreeTraversalNode {
up,
branch,
value: &nodes[idx].value,
idx,
}],
0,
),
|(mut flat, child_up), (b, child_idx)| {
let (mut sub_flat, new_up) = flat_rec(child_up, nodes, *child_idx, b);
flat.append(&mut sub_flat);
(flat, new_up)
},
);
f.1 += 1;
f
}
if self.is_empty() {
None
} else {
Some((
&self.nodes[0].value,
self.nodes[0]
.children
.iter()
.fold((Vec::new(), 0), |(mut flat, child_up), (b, child_idx)| {
let (mut sub_flat, new_up) = flat_rec(child_up, &self.nodes, *child_idx, b);
flat.append(&mut sub_flat);
(flat, new_up)
})
.0,
))
}
}
/*
pub fn move_sub_tree(
&mut self,
from: Path<B>,
to: Path<B>,
destination: Option<&mut Tree<N, B>>,
) -> Result<(), Path<B>> {
let path_idxs = self
.get_path_idxs(path)
.map_err(|(_, idx)| path.path_to(idx))?;
//remove children
self.move_sub_tree(path_idxs.pop().unwrap());
let mut attr = path.pop_leaf();
//remove empty parent nodes
while !path_idxs.is_empty() && self.nodes[path_idxs.last()].children.len() == 1 {
self.nodes.remove(path_idxs.pop().unwrap());
attr = path.pop_leaf();
}
//remove child link of parent
if !path_idxs.is_empty() {
self.nodes[path_idxs].children.remove(attr);
}
Ok(())
}*/
//fn move_sub_tree(&mut self, from: NodeIDX, to: NodeIDX, tree: &mut Tree<N, B>) {
// tree.nodes[to].children.insert(attr, tree.nodes.len());
// tree.nodes.push(TreeNode {})
// self.remove_sub_tree(idx, );
/// Returns the index of the node at the given [path]
/// If the node doesn't exist, it returns the index of the closest existing node in the tree and the index of the inexistent child in [path].
/// If the tree is empty, None is returned.
//TODO opti: use idx to iter
/// Applies the differential to the tree without checking its validity beforehand
///
/// # Panics
/// If a targetted node's parent does not exist upon change or addition
fn overwrite(&mut self, diff: DiffTree<N, B>) {
for (ph, d) in diff {
if let Some(now) = d.1 {
// New or change node
// Panics if the parent is inexistent
self.insert(&ph, now).unwrap();
} else if d.0.is_some() {
// Remove node if it exists
let _ = self.remove_sub_tree(&ph);
}
}
}
/// Applies the differential to the tree if it is valid
pub fn apply(&mut self, diff: DiffTree<N, B>) -> Result<(), Path<B>> {
// Diff validity check
for (ph, d) in diff.iter() {
if let Some(before) = &d.0 {
// Check case: Change or delete node
// Corresponding node in tree?
let node_idx = self
.get_idx(&ph, None)
//TODO: Even when empty?
.map_err(|r| ph.path_to(r.unwrap_or((0, 0)).1))?;
// Diff corresponds to node value?
if &self.nodes[node_idx].value != before {
return Err(ph);
}
} else if d.1.is_some() {
// Check case: New node
let mut ph = ph.clone();
ph.pop_leaf();
self.get_idx(&ph, None)
.map_err(|r| ph.path_to(r.unwrap_or((0, 0)).1))?;
}
}
// Apply diff
self.overwrite(diff);
Ok(())
}
/*
pub fn values(&self) -> Vec<&N> {
if let Some(n) = self.get(0) {
let values = Vec::new();
values.push(n);
values.append(self.iter().map(|(_, value)| value).collect());
values
} else {
Default::default()
}
}
*/
pub fn is_empty(&self) -> bool {
self.nodes.is_empty() || self.removed.last() == Some(&0)
}
}
impl<N, B> Tree<N, B>
where
N: Debug + Clone + PartialEq,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
pub fn diff(&mut self, other: &Tree<N, B>) -> DiffTree<N, B> {
// Check if one of the trees is empty
let mut diff = DiffTree::new();
if other.nodes.is_empty() {
diff.mirror_sub_tree(self, &Path::new(), false);
return diff;
}
if self.nodes.is_empty() {
diff.mirror_sub_tree(other, &Path::new(), true);
return diff;
}
// Set the root node
if self.nodes[0].value == other.nodes[0].value {
// values are identical, no difference to save
diff.insert_root((None, None));
} else {
diff.insert_root((
Some(self.nodes[0].value.clone()),
Some(other.nodes[0].value.clone()),
));
}
// Check and set the child nodes
self.diff_rec(&mut diff, other, 0, 0, 0);
diff
}
fn diff_rec(
&self,
diff: &mut DiffTree<N, B>,
other: &Tree<N, B>,
idx_d: NodeIDX,
idx_s: NodeIDX,
idx_o: NodeIDX,
) {
let mut branches_o = other.nodes[idx_o].children.clone();
// Get children of self
for (branch, &c_idx_s) in &self.nodes[idx_s].children {
// Get corresponding child in other
if let Some(c_idx_o) = branches_o.remove(branch) {
// Create a child node in diff
let c_idx_d = diff
.insert_at(
idx_d,
branch.clone(),
(
Some(self.nodes[c_idx_s].value.clone()),
Some(other.nodes[c_idx_o].value.clone()),
),
)
.unwrap()
.unwrap();
self.diff_rec(diff, other, c_idx_d, c_idx_s, c_idx_o);
} else {
// Create a child node in diff
let c_idx_d = diff
.insert_at(idx_d, branch.clone(), Default::default())
.unwrap()
.unwrap();
diff.mirror_sub_tree_at(self, c_idx_d, c_idx_s, false);
}
}
// Get remaining children of other
for (branch, c_idx_o) in branches_o {
// Create a child node in diff
let c_idx_d = diff
.insert_at(idx_d, branch.clone(), Default::default())
.unwrap()
.unwrap();
diff.mirror_sub_tree_at(other, c_idx_d, c_idx_o, true);
}
}
/*
let (rs, node_s) = if let Some((r, nodes)) = self.flat() {
(r, nodes)
} else {
let diff = DiffTree::new();
diff.;
return diff;
};
let (ro, node_o) = if let Some((r, nodes)) = other.flat() {
(r, nodes)
} else {
return DiffTree::new()
};
for b in self.flat() {
self.nodes[]
}
todo!()
}*/
pub fn zip(&mut self, other: &Tree<N, B>) -> DiffTree<N, B> {
let mut diff = DiffTree::new();
diff.mirror_sub_tree(&self, &Path::new(), false);
diff.mirror_sub_tree(other, &Path::new(), true);
diff
}
}
/// Describes a node's value and position relatively
#[derive(Debug)]
pub struct TreeTraversalNode<'a, N, B>
where
N: Debug,
B: Clone + Debug + Default + PartialEq + Eq + PartialOrd + Ord + Hash,
{
/// How much higher the parent of the described node is compared to the previous node
pub up: usize,
/// The branch leading from the parent to the described node
pub branch: &'a B,
/// The node's value
pub value: &'a N,
/// The node's index
idx: NodeIDX,
}