1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use crate::Access;
use na::{RealField, Vector3};
use std::convert::Into;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};

/// East North Up vector
///
/// This struct represents a vector in the ENU coordinate system.
/// See: [ENU](https://en.wikipedia.org/wiki/Axes_conventions) for a general
/// description.
///
/// # Note
/// ENU implements `Into` on all operations. This means that any vector that
/// can be converted to ENU with a `From` implementation will automatically
/// be able to work with ENU at the cost of the `Into` conversion.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct ENU<N: RealField>(Vector3<N>);

impl<N: RealField> ENU<N> {
    /// Create a new ENU vector
    pub fn new(e: N, n: N, u: N) -> ENU<N> {
        ENU(Vector3::new(e, n, u))
    }

    /// Computes the L2 (Euclidean) norm of this vector
    pub fn norm(&self) -> N {
        self.0.norm()
    }
}

impl<N: RealField + Copy> ENU<N> {
    /// Get the East component of this vector
    pub fn east(&self) -> N {
        self.0.x
    }

    /// Get the North component of this vector
    pub fn north(&self) -> N {
        self.0.y
    }

    /// Get the Up component of this vector
    pub fn up(&self) -> N {
        self.0.z
    }
}

impl<N: RealField + Copy + Add<N, Output = N>, T: Into<ENU<N>>> Add<T> for ENU<N> {
    type Output = ENU<N>;
    fn add(self, right: T) -> Self::Output {
        ENU(self.0 + right.into().0)
    }
}

impl<N: RealField + Copy + AddAssign<N>, T: Into<ENU<N>>> AddAssign<T> for ENU<N> {
    fn add_assign(&mut self, right: T) {
        self.0 += right.into().0
    }
}

impl<N: RealField + Copy + Sub<N, Output = N>, T: Into<ENU<N>>> Sub<T> for ENU<N> {
    type Output = ENU<N>;
    fn sub(self, right: T) -> Self::Output {
        ENU(self.0 - right.into().0)
    }
}

impl<N: RealField + Copy + SubAssign<N>, T: Into<ENU<N>>> SubAssign<T> for ENU<N> {
    fn sub_assign(&mut self, right: T) {
        self.0 -= right.into().0
    }
}

impl<N: RealField + Copy + Mul<N, Output = N>> Mul<N> for ENU<N> {
    type Output = ENU<N>;
    fn mul(self, right: N) -> Self::Output {
        ENU(self.0 * right)
    }
}

impl<N: RealField + Copy + MulAssign<N>> MulAssign<N> for ENU<N> {
    fn mul_assign(&mut self, right: N) {
        self.0 *= right
    }
}

impl<N: RealField + Copy + Div<N, Output = N>> Div<N> for ENU<N> {
    type Output = ENU<N>;
    fn div(self, right: N) -> Self::Output {
        ENU(self.0 / right)
    }
}

impl<N: RealField + Copy + DivAssign<N>> DivAssign<N> for ENU<N> {
    fn div_assign(&mut self, right: N) {
        self.0 /= right
    }
}

impl<N: RealField> Access<Vector3<N>> for ENU<N> {
    fn access(self) -> Vector3<N> {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ned::NED;

    quickcheck! {
        fn create_enu(e: f32, n: f32, u: f32) -> () {
            ENU::new(e, n, u);
        }

        fn get_components(e: f32, n: f32, u: f32) -> () {
            let vec = ENU::new(e, n, u);
            assert_eq!(vec.east(), e);
            assert_eq!(vec.north(), n);
            assert_eq!(vec.up(), u);
        }

        fn from_ned(n: f32, e: f32, d: f32) -> () {
            let ned = NED::new(n, e, d);
            let enu = ENU::from(ned);
            assert_eq!(enu.east(), e);
            assert_eq!(enu.north(), n);
            assert_eq!(enu.up(), -d);
        }
    }
}