[][src]Struct nannou::math::Basis2

pub struct Basis2<S> { /* fields omitted */ }

A two-dimensional rotation matrix.

The matrix is guaranteed to be orthogonal, so some operations can be implemented more efficiently than the implementations for math::Matrix2. To enforce orthogonality at the type level the operations have been restricted to a subset of those implemented on Matrix2.

Example

Suppose we want to rotate a vector that lies in the x-y plane by some angle. We can accomplish this quite easily with a two-dimensional rotation matrix:

use cgmath::Rad;
use cgmath::Vector2;
use cgmath::{Matrix, Matrix2};
use cgmath::{Rotation, Rotation2, Basis2};
use cgmath::ApproxEq;
use std::f64;

// For simplicity, we will rotate the unit x vector to the unit y vector --
// so the angle is 90 degrees, or π/2.
let unit_x: Vector2<f64> = Vector2::unit_x();
let rot: Basis2<f64> = Rotation2::from_angle(Rad(0.5f64 * f64::consts::PI));

// Rotate the vector using the two-dimensional rotation matrix:
let unit_y = rot.rotate_vector(unit_x);

// Since sin(π/2) may not be exactly zero due to rounding errors, we can
// use approx's assert_ulps_eq!() feature to show that it is close enough.
// assert_ulps_eq!(&unit_y, &Vector2::unit_y()); // TODO: Figure out how to use this

// This is exactly equivalent to using the raw matrix itself:
let unit_y2: Matrix2<_> = rot.into();
let unit_y2 = unit_y2 * unit_x;
assert_eq!(unit_y2, unit_y);

// Note that we can also concatenate rotations:
let rot_half: Basis2<f64> = Rotation2::from_angle(Rad(0.25f64 * f64::consts::PI));
let unit_y3 = (rot_half * rot_half).rotate_vector(unit_x);
// assert_ulps_eq!(&unit_y3, &unit_y2); // TODO: Figure out how to use this

Trait Implementations

impl<S> Serialize for Basis2<S> where
    S: Serialize
[src]

impl<S> One for Basis2<S> where
    S: BaseFloat
[src]

fn set_one(&mut self)[src]

Sets self to the multiplicative identity element of Self, 1.

fn is_one(&self) -> bool where
    Self: PartialEq<Self>, 
[src]

Returns true if self is equal to the multiplicative identity. Read more

impl<S> From<Basis2<S>> for Matrix2<S> where
    S: BaseFloat
[src]

impl<S> AsRef<Matrix2<S>> for Basis2<S> where
    S: BaseFloat
[src]

impl<S> Mul<Basis2<S>> for Basis2<S> where
    S: BaseFloat
[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<'a, S> Mul<&'a Basis2<S>> for Basis2<S> where
    S: BaseFloat
[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<'a, S> Mul<Basis2<S>> for &'a Basis2<S> where
    S: BaseFloat
[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<'a, 'b, S> Mul<&'a Basis2<S>> for &'b Basis2<S> where
    S: BaseFloat
[src]

type Output = Basis2<S>

The resulting type after applying the * operator.

impl<'de, S> Deserialize<'de> for Basis2<S> where
    S: Deserialize<'de>, 
[src]

impl<S> Copy for Basis2<S> where
    S: Copy
[src]

impl<S> PartialEq<Basis2<S>> for Basis2<S> where
    S: PartialEq<S>, 
[src]

impl<S> Product<Basis2<S>> for Basis2<S> where
    S: BaseFloat
[src]

impl<'a, S> Product<&'a Basis2<S>> for Basis2<S> where
    S: 'a + BaseFloat
[src]

impl<S> Rotation<Point2<S>> for Basis2<S> where
    S: BaseFloat
[src]

fn rotate_point(&self, point: P) -> P[src]

Rotate a point using this rotation, by converting it to its representation as a vector. Read more

impl<S> Debug for Basis2<S> where
    S: Debug
[src]

impl<S> Rotation2<S> for Basis2<S> where
    S: BaseFloat
[src]

impl<S> Clone for Basis2<S> where
    S: Clone
[src]

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl<S> ApproxEq for Basis2<S> where
    S: BaseFloat
[src]

type Epsilon = <S as ApproxEq>::Epsilon

Used for specifying relative comparisons.

fn relative_ne(
    &self,
    other: &Self,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool
[src]

The inverse of ApproxEq::relative_eq.

fn ulps_ne(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool[src]

The inverse of ApproxEq::ulps_eq.

Auto Trait Implementations

impl<S> Send for Basis2<S> where
    S: Send

impl<S> Sync for Basis2<S> where
    S: Sync

Blanket Implementations

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Style for T where
    T: Any + Debug + PartialEq<T>, 
[src]

impl<T> DeserializeOwned for T where
    T: Deserialize<'de>, 
[src]

impl<T> Content for T[src]

impl<T> SafeBorrow<T> for T[src]

impl<S> FromSample<S> for S[src]

impl<T, U> ToSample<U> for T where
    U: FromSample<T>, 
[src]

impl<S, T> Duplex<S> for T where
    T: FromSample<S> + ToSample<S>, 
[src]

impl<T> SetParameter for T

fn set<T>(&mut self, value: T) -> <T as Parameter<Self>>::Result where
    T: Parameter<Self>, 

Sets value as a parameter of self.

impl<T> SetParameter for T

fn set<T>(&mut self, value: T) -> <T as Parameter<Self>>::Result where
    T: Parameter<Self>, 

Sets value as a parameter of self.