Struct nalgebra::geometry::Point[][src]

#[repr(C)]pub struct Point<T, const D: usize> {
    pub coords: SVector<T, D>,
}

A point in an euclidean space.

The difference between a point and a vector is only semantic. See the user guide for details on the distinction. The most notable difference that vectors ignore translations. In particular, an Isometry2 or Isometry3 will transform points by applying a rotation and a translation on them. However, these isometries will only apply rotations to vectors (when doing isometry * vector, the translation part of the isometry is ignored).

Construction

Transformation

Transforming a point by an Isometry, rotation, etc. can be achieved by multiplication, e.g., isometry * point or rotation * point. Some of these transformation may have some other methods, e.g., isometry.inverse_transform_point(&point). See the documentation of said transformations for details.

Fields

coords: SVector<T, D>

The coordinates of this point, i.e., the shift from the origin.

Implementations

impl<T: Scalar, const D: usize> Point<T, D>[src]

pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, f: F) -> Point<T2, D>[src]

Returns a point containing the result of f applied to each of its entries.

Example

let p = Point2::new(1.0, 2.0);
assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));

// This works in any dimension.
let p = Point3::new(1.1, 2.1, 3.1);
assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));

pub fn apply<F: FnMut(T) -> T>(&mut self, f: F)[src]

Replaces each component of self by the result of a closure f applied on it.

Example

let mut p = Point2::new(1.0, 2.0);
p.apply(|e| e * 10.0);
assert_eq!(p, Point2::new(10.0, 20.0));

// This works in any dimension.
let mut p = Point3::new(1.0, 2.0, 3.0);
p.apply(|e| e * 10.0);
assert_eq!(p, Point3::new(10.0, 20.0, 30.0));

pub fn to_homogeneous(&self) -> OVector<T, DimNameSum<Const<D>, U1>> where
    T: One,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>>, 
[src]

Converts this point into a vector in homogeneous coordinates, i.e., appends a 1 at the end of it.

This is the same as .into().

Example

let p = Point2::new(10.0, 20.0);
assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));

pub fn from_coordinates(coords: SVector<T, D>) -> Self[src]

👎 Deprecated:

Use Point::from(vector) instead.

Creates a new point with the given coordinates.

pub fn len(&self) -> usize[src]

The dimension of this point.

Example

let p = Point2::new(1.0, 2.0);
assert_eq!(p.len(), 2);

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.len(), 3);

pub fn is_empty(&self) -> bool[src]

Returns true if the point contains no elements.

Example

let p = Point2::new(1.0, 2.0);
assert!(!p.is_empty());

pub fn stride(&self) -> usize[src]

👎 Deprecated:

This methods is no longer significant and will always return 1.

The stride of this point. This is the number of buffer element separating each component of this point.

pub fn iter(
    &self
) -> MatrixIter<'_, T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>>>::Buffer>

Notable traits for MatrixIter<'a, T, R, C, S>

impl<'a, T: Scalar, R: Dim, C: Dim, S: 'a + Storage<T, R, C>> Iterator for MatrixIter<'a, T, R, C, S> type Item = &'a T;
[src]

Iterates through this point coordinates.

Example

let p = Point3::new(1.0, 2.0, 3.0);
let mut it = p.iter().cloned();

assert_eq!(it.next(), Some(1.0));
assert_eq!(it.next(), Some(2.0));
assert_eq!(it.next(), Some(3.0));
assert_eq!(it.next(), None);

pub unsafe fn get_unchecked(&self, i: usize) -> &T[src]

Gets a reference to i-th element of this point without bound-checking.

pub fn iter_mut(
    &mut self
) -> MatrixIterMut<'_, T, Const<D>, Const<1>, <DefaultAllocator as Allocator<T, Const<D>>>::Buffer>

Notable traits for MatrixIterMut<'a, T, R, C, S>

impl<'a, T: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<T, R, C>> Iterator for MatrixIterMut<'a, T, R, C, S> type Item = &'a mut T;
[src]

Mutably iterates through this point coordinates.

Example

let mut p = Point3::new(1.0, 2.0, 3.0);

for e in p.iter_mut() {
    *e *= 10.0;
}

assert_eq!(p, Point3::new(10.0, 20.0, 30.0));

pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T[src]

Gets a mutable reference to i-th element of this point without bound-checking.

pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize)[src]

Swaps two entries without bound-checking.

impl<T: Scalar + SimdPartialOrd, const D: usize> Point<T, D>[src]

pub fn inf(&self, other: &Self) -> Point<T, D>[src]

Computes the infimum (aka. componentwise min) of two points.

pub fn sup(&self, other: &Self) -> Point<T, D>[src]

Computes the supremum (aka. componentwise max) of two points.

pub fn inf_sup(&self, other: &Self) -> (Point<T, D>, Point<T, D>)[src]

Computes the (infimum, supremum) of two points.

impl<T: Scalar, const D: usize> Point<T, D>[src]

pub unsafe fn new_uninitialized() -> Self[src]

Creates a new point with uninitialized coordinates.

pub fn origin() -> Self where
    T: Zero
[src]

Creates a new point with all coordinates equal to zero.

Example

// This works in any dimension.
// The explicit crate::<f32> type annotation may not always be needed,
// depending on the context of type inference.
let pt = Point2::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0);

let pt = Point3::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);

pub fn from_slice(components: &[T]) -> Self[src]

Creates a new point from a slice.

Example

let data = [ 1.0, 2.0, 3.0 ];

let pt = Point2::from_slice(&data[..2]);
assert_eq!(pt, Point2::new(1.0, 2.0));

let pt = Point3::from_slice(&data);
assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));

pub fn from_homogeneous(v: OVector<T, DimNameSum<Const<D>, U1>>) -> Option<Self> where
    T: Scalar + Zero + One + ClosedDiv,
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>>, 
[src]

Creates a new point from its homogeneous vector representation.

In practice, this builds a D-dimensional points with the same first D component as v divided by the last component of v. Returns None if this divisor is zero.

Example


let coords = Vector4::new(1.0, 2.0, 3.0, 1.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0)));

// All component of the result will be divided by the
// last component of the vector, here 2.0.
let coords = Vector4::new(1.0, 2.0, 3.0, 2.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5)));

// Fails because the last component is zero.
let coords = Vector4::new(1.0, 2.0, 3.0, 0.0);
let pt = Point3::from_homogeneous(coords);
assert!(pt.is_none());

// Works also in other dimensions.
let coords = Vector3::new(1.0, 2.0, 1.0);
let pt = Point2::from_homogeneous(coords);
assert_eq!(pt, Some(Point2::new(1.0, 2.0)));

pub fn cast<To: Scalar>(self) -> Point<To, D> where
    Point<To, D>: SupersetOf<Self>, 
[src]

Cast the components of self to another type.

Example

let pt = Point2::new(1.0f64, 2.0);
let pt2 = pt.cast::<f32>();
assert_eq!(pt2, Point2::new(1.0f32, 2.0));

impl<T> Point<T, 1_usize>[src]

pub const fn new(x: T) -> Self[src]

Initializes this point from its components.

Example

let p = Point1::new(1.0);
assert_eq!(p.x, 1.0);

impl<T> Point<T, 2_usize>[src]

pub const fn new(x: T, y: T) -> Self[src]

Initializes this point from its components.

Example

let p = Point2::new(1.0, 2.0);
assert!(p.x == 1.0 && p.y == 2.0);

impl<T> Point<T, 3_usize>[src]

pub const fn new(x: T, y: T, z: T) -> Self[src]

Initializes this point from its components.

Example

let p = Point3::new(1.0, 2.0, 3.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);

impl<T> Point<T, 4_usize>[src]

pub const fn new(x: T, y: T, z: T, w: T) -> Self[src]

Initializes this point from its components.

Example

let p = Point4::new(1.0, 2.0, 3.0, 4.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);

impl<T> Point<T, 5_usize>[src]

pub const fn new(x: T, y: T, z: T, w: T, a: T) -> Self[src]

Initializes this point from its components.

Example

let p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);

impl<T> Point<T, 6_usize>[src]

pub const fn new(x: T, y: T, z: T, w: T, a: T, b: T) -> Self[src]

Initializes this point from its components.

Example

let p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);

impl<T: Scalar, const D: usize> Point<T, D> where
    Const<D>: ToTypenum
[src]

pub fn xx(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U0, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xxx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U0, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xy(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yx(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yy(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xxy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xyx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xyy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yxx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yxy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yyx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yyy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xz(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yz(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zx(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zy(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zz(&self) -> Point2<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xxz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xyz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xzx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xzy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xzz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yxz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yyz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yzx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yzy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yzz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zxx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zxy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zxz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zyx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zyy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zyz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zzx(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zzy(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zzz(&self) -> Point3<T> where
    <Const<D> as ToTypenum>::Typenum: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

Trait Implementations

impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq<Point<T, D>> for Point<T, D> where
    T::Epsilon: Copy
[src]

type Epsilon = T::Epsilon

Used for specifying relative comparisons.

impl<'a, 'b, T, D2, SB, const D1: usize> Add<&'b Matrix<T, D2, Const<1_usize>, SB>> for &'a Point<T, D1> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the + operator.

impl<'b, T, D2, SB, const D1: usize> Add<&'b Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the + operator.

impl<'a, T, D2, SB, const D1: usize> Add<Matrix<T, D2, Const<1_usize>, SB>> for &'a Point<T, D1> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the + operator.

impl<T, D2, SB, const D1: usize> Add<Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the + operator.

impl<'b, T, D2: Dim, SB, const D1: usize> AddAssign<&'b Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedAdd,
    SB: Storage<T, D2>,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2>, 
[src]

impl<T, D2: Dim, SB, const D1: usize> AddAssign<Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedAdd,
    SB: Storage<T, D2>,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2>, 
[src]

impl<T: Scalar + Bounded, const D: usize> Bounded for Point<T, D>[src]

impl<T: Clone, const D: usize> Clone for Point<T, D>[src]

impl<T: Scalar + Copy, const D: usize> Copy for Point<T, D>[src]

impl<T: Debug, const D: usize> Debug for Point<T, D>[src]

impl<T: Scalar> Deref for Point<T, 1>[src]

type Target = X<T>

The resulting type after dereferencing.

impl<T: Scalar> Deref for Point<T, 2>[src]

type Target = XY<T>

The resulting type after dereferencing.

impl<T: Scalar> Deref for Point<T, 3>[src]

type Target = XYZ<T>

The resulting type after dereferencing.

impl<T: Scalar> Deref for Point<T, 4>[src]

type Target = XYZW<T>

The resulting type after dereferencing.

impl<T: Scalar> Deref for Point<T, 5>[src]

type Target = XYZWA<T>

The resulting type after dereferencing.

impl<T: Scalar> Deref for Point<T, 6>[src]

type Target = XYZWAB<T>

The resulting type after dereferencing.

impl<T: Scalar> DerefMut for Point<T, 1>[src]

impl<T: Scalar> DerefMut for Point<T, 2>[src]

impl<T: Scalar> DerefMut for Point<T, 3>[src]

impl<T: Scalar> DerefMut for Point<T, 4>[src]

impl<T: Scalar> DerefMut for Point<T, 5>[src]

impl<T: Scalar> DerefMut for Point<T, 6>[src]

impl<T: Scalar + Display, const D: usize> Display for Point<T, D>[src]

impl<T: Scalar + ClosedDiv, const D: usize> Div<T> for Point<T, D>[src]

type Output = Point<T, D>

The resulting type after applying the / operator.

impl<'a, T: Scalar + ClosedDiv, const D: usize> Div<T> for &'a Point<T, D>[src]

type Output = Point<T, D>

The resulting type after applying the / operator.

impl<T: Scalar + ClosedDiv, const D: usize> DivAssign<T> for Point<T, D>[src]

impl<T: Scalar + Eq, const D: usize> Eq for Point<T, D>[src]

impl<T: Scalar + Copy + PrimitiveSimdValue, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 16]> for Point<T, D> where
    T: From<[<T as SimdValue>::Element; 16]>,
    T::Element: Scalar + Copy,
    <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy
[src]

impl<T: Scalar + Copy + PrimitiveSimdValue, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 2]> for Point<T, D> where
    T: From<[<T as SimdValue>::Element; 2]>,
    T::Element: Scalar + Copy,
    <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy
[src]

impl<T: Scalar + Copy + PrimitiveSimdValue, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 4]> for Point<T, D> where
    T: From<[<T as SimdValue>::Element; 4]>,
    T::Element: Scalar + Copy,
    <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy
[src]

impl<T: Scalar + Copy + PrimitiveSimdValue, const D: usize> From<[Point<<T as SimdValue>::Element, D>; 8]> for Point<T, D> where
    T: From<[<T as SimdValue>::Element; 8]>,
    T::Element: Scalar + Copy,
    <DefaultAllocator as Allocator<T::Element, Const<D>>>::Buffer: Copy
[src]

impl<T: Scalar, const D: usize> From<Matrix<T, Const<D>, Const<1_usize>, <DefaultAllocator as Allocator<T, Const<D>, Const<1_usize>>>::Buffer>> for Point<T, D>[src]

impl<T: Scalar + Zero + One, const D: usize> From<Point<T, D>> for OVector<T, DimNameSum<Const<D>, U1>> where
    Const<D>: DimNameAdd<U1>,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>>, 
[src]

impl<T: Scalar + Hash, const D: usize> Hash for Point<T, D>[src]

impl<T: Scalar, const D: usize> Index<usize> for Point<T, D>[src]

type Output = T

The returned type after indexing.

impl<T: Scalar, const D: usize> IndexMut<usize> for Point<T, D>[src]

impl<'b, T: SimdRealField> Mul<&'b Point<T, 2_usize>> for UnitComplex<T> where
    T::Element: SimdRealField
[src]

type Output = Point2<T>

The resulting type after applying the * operator.

impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 2_usize>> for &'a UnitComplex<T> where
    T::Element: SimdRealField
[src]

type Output = Point2<T>

The resulting type after applying the * operator.

impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3_usize>> for &'a UnitQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<'b, T: SimdRealField> Mul<&'b Point<T, 3_usize>> for UnitQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3_usize>> for &'a UnitDualQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<'b, T: SimdRealField> Mul<&'b Point<T, 3_usize>> for UnitDualQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<'b, T, const D: usize> Mul<&'b Point<T, D>> for Rotation<T, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, 'b, T, const D: usize> Mul<&'b Point<T, D>> for &'a Rotation<T, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, 'b, T, const D: usize> Mul<&'b Point<T, D>> for &'a Translation<T, D> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'b, T, const D: usize> Mul<&'b Point<T, D>> for Translation<T, D> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Isometry<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Isometry<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for Similarity<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Point<T, D>> for &'a Similarity<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'b, T, C, const D: usize> Mul<&'b Point<T, D>> for Transform<T, C, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    Const<D>: DimNameAdd<U1>,
    C: TCategory,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, 'b, T, C, const D: usize> Mul<&'b Point<T, D>> for &'a Transform<T, C, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    Const<D>: DimNameAdd<U1>,
    C: TCategory,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'b, T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<&'b Point<T, D2>> for Matrix<T, Const<R1>, Const<C1>, SA> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    SA: Storage<T, Const<R1>, Const<C1>>,
    ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>, 
[src]

type Output = Point<T, R1>

The resulting type after applying the * operator.

impl<'a, 'b, T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<&'b Point<T, D2>> for &'a Matrix<T, Const<R1>, Const<C1>, SA> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    SA: Storage<T, Const<R1>, Const<C1>>,
    ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>, 
[src]

type Output = Point<T, R1>

The resulting type after applying the * operator.

impl<T: SimdRealField> Mul<Point<T, 2_usize>> for UnitComplex<T> where
    T::Element: SimdRealField
[src]

type Output = Point2<T>

The resulting type after applying the * operator.

impl<'a, T: SimdRealField> Mul<Point<T, 2_usize>> for &'a UnitComplex<T> where
    T::Element: SimdRealField
[src]

type Output = Point2<T>

The resulting type after applying the * operator.

impl<'a, T: SimdRealField> Mul<Point<T, 3_usize>> for &'a UnitQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<T: SimdRealField> Mul<Point<T, 3_usize>> for UnitQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<'a, T: SimdRealField> Mul<Point<T, 3_usize>> for &'a UnitDualQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<T: SimdRealField> Mul<Point<T, 3_usize>> for UnitDualQuaternion<T> where
    T::Element: SimdRealField
[src]

type Output = Point3<T>

The resulting type after applying the * operator.

impl<T, const D: usize> Mul<Point<T, D>> for Rotation<T, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, T, const D: usize> Mul<Point<T, D>> for &'a Rotation<T, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    ShapeConstraint: AreMultipliable<Const<D>, Const<D>, Const<D>, U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, T, const D: usize> Mul<Point<T, D>> for &'a Translation<T, D> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<T, const D: usize> Mul<Point<T, D>> for Translation<T, D> where
    T: Scalar + ClosedAdd,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Isometry<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Isometry<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for Similarity<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, T: SimdRealField, R, const D: usize> Mul<Point<T, D>> for &'a Similarity<T, R, D> where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<T, C, const D: usize> Mul<Point<T, D>> for Transform<T, C, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    Const<D>: DimNameAdd<U1>,
    C: TCategory,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, T, C, const D: usize> Mul<Point<T, D>> for &'a Transform<T, C, D> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    Const<D>: DimNameAdd<U1>,
    C: TCategory,
    DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, 
[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<Point<T, D2>> for Matrix<T, Const<R1>, Const<C1>, SA> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    SA: Storage<T, Const<R1>, Const<C1>>,
    ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>, 
[src]

type Output = Point<T, R1>

The resulting type after applying the * operator.

impl<'a, T, SA, const D2: usize, const R1: usize, const C1: usize> Mul<Point<T, D2>> for &'a Matrix<T, Const<R1>, Const<C1>, SA> where
    T: Scalar + Zero + One + ClosedAdd + ClosedMul,
    SA: Storage<T, Const<R1>, Const<C1>>,
    ShapeConstraint: AreMultipliable<Const<R1>, Const<C1>, Const<D2>, U1>, 
[src]

type Output = Point<T, R1>

The resulting type after applying the * operator.

impl<T: Scalar + ClosedMul, const D: usize> Mul<T> for Point<T, D>[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<'a, T: Scalar + ClosedMul, const D: usize> Mul<T> for &'a Point<T, D>[src]

type Output = Point<T, D>

The resulting type after applying the * operator.

impl<T: Scalar + ClosedMul, const D: usize> MulAssign<T> for Point<T, D>[src]

impl<T: Scalar + ClosedNeg, const D: usize> Neg for Point<T, D>[src]

type Output = Self

The resulting type after applying the - operator.

impl<'a, T: Scalar + ClosedNeg, const D: usize> Neg for &'a Point<T, D>[src]

type Output = Point<T, D>

The resulting type after applying the - operator.

impl<T: Scalar, const D: usize> PartialEq<Point<T, D>> for Point<T, D>[src]

impl<T: Scalar + PartialOrd, const D: usize> PartialOrd<Point<T, D>> for Point<T, D>[src]

impl<T: Scalar + RelativeEq, const D: usize> RelativeEq<Point<T, D>> for Point<T, D> where
    T::Epsilon: Copy
[src]

impl<T: Scalar + SimdValue, const D: usize> SimdValue for Point<T, D> where
    T::Element: Scalar
[src]

type Element = Point<T::Element, D>

The type of the elements of each lane of this SIMD value.

type SimdBool = T::SimdBool

Type of the result of comparing two SIMD values like self.

impl<'a, 'b, T, D2, SB, const D1: usize> Sub<&'b Matrix<T, D2, Const<1_usize>, SB>> for &'a Point<T, D1> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the - operator.

impl<'b, T, D2, SB, const D1: usize> Sub<&'b Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the - operator.

impl<'a, 'b, T, const D: usize> Sub<&'b Point<T, D>> for &'a Point<T, D> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = SVector<T, D>

The resulting type after applying the - operator.

impl<'b, T, const D: usize> Sub<&'b Point<T, D>> for Point<T, D> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = SVector<T, D>

The resulting type after applying the - operator.

impl<'a, T, D2, SB, const D1: usize> Sub<Matrix<T, D2, Const<1_usize>, SB>> for &'a Point<T, D1> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the - operator.

impl<T, D2, SB, const D1: usize> Sub<Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2, Representative = Const<D1>> + SameNumberOfColumns<U1, U1, Representative = U1>,
    D2: Dim,
    SB: Storage<T, D2>, 
[src]

type Output = Point<T, D1>

The resulting type after applying the - operator.

impl<'a, T, const D: usize> Sub<Point<T, D>> for &'a Point<T, D> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = SVector<T, D>

The resulting type after applying the - operator.

impl<T, const D: usize> Sub<Point<T, D>> for Point<T, D> where
    T: Scalar + ClosedSub,
    ShapeConstraint: SameNumberOfRows<Const<D>, Const<D>, Representative = Const<D>> + SameNumberOfColumns<U1, U1, Representative = U1>, 
[src]

type Output = SVector<T, D>

The resulting type after applying the - operator.

impl<'b, T, D2: Dim, SB, const D1: usize> SubAssign<&'b Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedSub,
    SB: Storage<T, D2>,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2>, 
[src]

impl<T, D2: Dim, SB, const D1: usize> SubAssign<Matrix<T, D2, Const<1_usize>, SB>> for Point<T, D1> where
    T: Scalar + ClosedSub,
    SB: Storage<T, D2>,
    ShapeConstraint: SameNumberOfRows<Const<D1>, D2>, 
[src]

impl<T1, T2, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, Const<1_usize>, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1_usize>>>::Output, Const<1_usize>>>::Buffer>> for Point<T1, D> where
    Const<D>: DimNameAdd<U1>,
    T1: Scalar,
    T2: Scalar + Zero + One + ClosedDiv + SupersetOf<T1>,
    DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>>, 
[src]

impl<T1, T2, const D: usize> SubsetOf<Point<T2, D>> for Point<T1, D> where
    T1: Scalar,
    T2: Scalar + SupersetOf<T1>, 
[src]

impl<T: Scalar + UlpsEq, const D: usize> UlpsEq<Point<T, D>> for Point<T, D> where
    T::Epsilon: Copy
[src]

Auto Trait Implementations

impl<T, const D: usize> RefUnwindSafe for Point<T, D> where
    T: RefUnwindSafe

impl<T, const D: usize> Send for Point<T, D> where
    T: Send

impl<T, const D: usize> Sync for Point<T, D> where
    T: Sync

impl<T, const D: usize> Unpin for Point<T, D> where
    T: Unpin

impl<T, const D: usize> UnwindSafe for Point<T, D> where
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T, Right> ClosedAdd<Right> for T where
    T: Add<Right, Output = T> + AddAssign<Right>, 
[src]

impl<T, Right> ClosedDiv<Right> for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<T, Right> ClosedMul<Right> for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T> ClosedNeg for T where
    T: Neg<Output = T>, 
[src]

impl<T, Right> ClosedSub<Right> for T where
    T: Sub<Right, Output = T> + SubAssign<Right>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<T> SimdPartialOrd for T where
    T: SimdValue<Element = T, SimdBool = bool> + PartialOrd<T>, 
[src]

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,