1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
//! An implementation of the CSR sparse matrix format.
//!
//! This is the module-level documentation. See [`CsrMatrix`] for the main documentation of the
//! CSC implementation.
use crate::cs::{CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
use crate::csc::CscMatrix;
use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter};
use crate::{SparseEntry, SparseEntryMut, SparseFormatError, SparseFormatErrorKind};

use nalgebra::Scalar;
use num_traits::One;

use std::slice::{Iter, IterMut};

/// A CSR representation of a sparse matrix.
///
/// The Compressed Sparse Row (CSR) format is well-suited as a general-purpose storage format
/// for many sparse matrix applications.
///
/// # Usage
///
/// ```rust
/// use nalgebra_sparse::csr::CsrMatrix;
/// use nalgebra::{DMatrix, Matrix3x4};
/// use matrixcompare::assert_matrix_eq;
///
/// // The sparsity patterns of CSR matrices are immutable. This means that you cannot dynamically
/// // change the sparsity pattern of the matrix after it has been constructed. The easiest
/// // way to construct a CSR matrix is to first incrementally construct a COO matrix,
/// // and then convert it to CSR.
/// # use nalgebra_sparse::coo::CooMatrix;
/// # let coo = CooMatrix::<f64>::new(3, 3);
/// let csr = CsrMatrix::from(&coo);
///
/// // Alternatively, a CSR matrix can be constructed directly from raw CSR data.
/// // Here, we construct a 3x4 matrix
/// let row_offsets = vec![0, 3, 3, 5];
/// let col_indices = vec![0, 1, 3, 1, 2];
/// let values = vec![1.0, 2.0, 3.0, 4.0, 5.0];
///
/// // The dense representation of the CSR data, for comparison
/// let dense = Matrix3x4::new(1.0, 2.0, 0.0, 3.0,
///                            0.0, 0.0, 0.0, 0.0,
///                            0.0, 4.0, 5.0, 0.0);
///
/// // The constructor validates the raw CSR data and returns an error if it is invalid.
/// let csr = CsrMatrix::try_from_csr_data(3, 4, row_offsets, col_indices, values)
///     .expect("CSR data must conform to format specifications");
/// assert_matrix_eq!(csr, dense);
///
/// // A third approach is to construct a CSR matrix from a pattern and values. Sometimes this is
/// // useful if the sparsity pattern is constructed separately from the values of the matrix.
/// let (pattern, values) = csr.into_pattern_and_values();
/// let csr = CsrMatrix::try_from_pattern_and_values(pattern, values)
///     .expect("The pattern and values must be compatible");
///
/// // Once we have constructed our matrix, we can use it for arithmetic operations together with
/// // other CSR matrices and dense matrices/vectors.
/// let x = csr;
/// # #[allow(non_snake_case)]
/// let xTx = x.transpose() * &x;
/// let z = DMatrix::from_fn(4, 8, |i, j| (i as f64) * (j as f64));
/// let w = 3.0 * xTx * z;
///
/// // Although the sparsity pattern of a CSR matrix cannot be changed, its values can.
/// // Here are two different ways to scale all values by a constant:
/// let mut x = x;
/// x *= 5.0;
/// x.values_mut().iter_mut().for_each(|x_i| *x_i *= 5.0);
/// ```
///
/// # Format
///
/// An `m x n` sparse matrix with `nnz` non-zeros in CSR format is represented by the
/// following three arrays:
///
/// - `row_offsets`, an array of integers with length `m + 1`.
/// - `col_indices`, an array of integers with length `nnz`.
/// - `values`, an array of values with length `nnz`.
///
/// The relationship between the arrays is described below.
///
/// - Each consecutive pair of entries `row_offsets[i] .. row_offsets[i + 1]` corresponds to an
///   offset range in `col_indices` that holds the column indices in row `i`.
/// - For an entry represented by the index `idx`, `col_indices[idx]` stores its column index and
///   `values[idx]` stores its value.
///
/// The following invariants must be upheld and are enforced by the data structure:
///
/// - `row_offsets[0] == 0`
/// - `row_offsets[m] == nnz`
/// - `row_offsets` is monotonically increasing.
/// - `0 <= col_indices[idx] < n` for all `idx < nnz`.
/// - The column indices associated with each row are monotonically increasing (see below).
///
/// The CSR format is a standard sparse matrix format (see [Wikipedia article]). The format
/// represents the matrix in a row-by-row fashion. The entries associated with row `i` are
/// determined as follows:
///
/// ```rust
/// # let row_offsets: Vec<usize> = vec![0, 0];
/// # let col_indices: Vec<usize> = vec![];
/// # let values: Vec<i32> = vec![];
/// # let i = 0;
/// let range = row_offsets[i] .. row_offsets[i + 1];
/// let row_i_cols = &col_indices[range.clone()];
/// let row_i_vals = &values[range];
///
/// // For each pair (j, v) in (row_i_cols, row_i_vals), we obtain a corresponding entry
/// // (i, j, v) in the matrix.
/// assert_eq!(row_i_cols.len(), row_i_vals.len());
/// ```
///
/// In the above example, for each row `i`, the column indices `row_i_cols` must appear in
/// monotonically increasing order. In other words, they must be *sorted*. This criterion is not
/// standard among all sparse matrix libraries, but we enforce this property as it is a crucial
/// assumption for both correctness and performance for many algorithms.
///
/// Note that the CSR and CSC formats are essentially identical, except that CSC stores the matrix
/// column-by-column instead of row-by-row like CSR.
///
/// [Wikipedia article]: https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CsrMatrix<T> {
    // Rows are major, cols are minor in the sparsity pattern
    pub(crate) cs: CsMatrix<T>,
}

impl<T> CsrMatrix<T> {
    /// Constructs a CSR representation of the (square) `n x n` identity matrix.
    #[inline]
    pub fn identity(n: usize) -> Self
    where
        T: Scalar + One,
    {
        Self {
            cs: CsMatrix::identity(n),
        }
    }

    /// Create a zero CSR matrix with no explicitly stored entries.
    pub fn zeros(nrows: usize, ncols: usize) -> Self {
        Self {
            cs: CsMatrix::new(nrows, ncols),
        }
    }

    /// Try to construct a CSR matrix from raw CSR data.
    ///
    /// It is assumed that each row contains unique and sorted column indices that are in
    /// bounds with respect to the number of columns in the matrix. If this is not the case,
    /// an error is returned to indicate the failure.
    ///
    /// An error is returned if the data given does not conform to the CSR storage format.
    /// See the documentation for [CsrMatrix](struct.CsrMatrix.html) for more information.
    pub fn try_from_csr_data(
        num_rows: usize,
        num_cols: usize,
        row_offsets: Vec<usize>,
        col_indices: Vec<usize>,
        values: Vec<T>,
    ) -> Result<Self, SparseFormatError> {
        let pattern = SparsityPattern::try_from_offsets_and_indices(
            num_rows,
            num_cols,
            row_offsets,
            col_indices,
        )
        .map_err(pattern_format_error_to_csr_error)?;
        Self::try_from_pattern_and_values(pattern, values)
    }

    /// Try to construct a CSR matrix from a sparsity pattern and associated non-zero values.
    ///
    /// Returns an error if the number of values does not match the number of minor indices
    /// in the pattern.
    pub fn try_from_pattern_and_values(
        pattern: SparsityPattern,
        values: Vec<T>,
    ) -> Result<Self, SparseFormatError> {
        if pattern.nnz() == values.len() {
            Ok(Self {
                cs: CsMatrix::from_pattern_and_values(pattern, values),
            })
        } else {
            Err(SparseFormatError::from_kind_and_msg(
                SparseFormatErrorKind::InvalidStructure,
                "Number of values and column indices must be the same",
            ))
        }
    }

    /// The number of rows in the matrix.
    #[inline]
    pub fn nrows(&self) -> usize {
        self.cs.pattern().major_dim()
    }

    /// The number of columns in the matrix.
    #[inline]
    pub fn ncols(&self) -> usize {
        self.cs.pattern().minor_dim()
    }

    /// The number of non-zeros in the matrix.
    ///
    /// Note that this corresponds to the number of explicitly stored entries, *not* the actual
    /// number of algebraically zero entries in the matrix. Explicitly stored entries can still
    /// be zero. Corresponds to the number of entries in the sparsity pattern.
    #[inline]
    pub fn nnz(&self) -> usize {
        self.cs.pattern().nnz()
    }

    /// The row offsets defining part of the CSR format.
    #[inline]
    pub fn row_offsets(&self) -> &[usize] {
        let (offsets, _, _) = self.cs.cs_data();
        offsets
    }

    /// The column indices defining part of the CSR format.
    #[inline]
    pub fn col_indices(&self) -> &[usize] {
        let (_, indices, _) = self.cs.cs_data();
        indices
    }

    /// The non-zero values defining part of the CSR format.
    #[inline]
    pub fn values(&self) -> &[T] {
        self.cs.values()
    }

    /// Mutable access to the non-zero values.
    #[inline]
    pub fn values_mut(&mut self) -> &mut [T] {
        self.cs.values_mut()
    }

    /// An iterator over non-zero triplets (i, j, v).
    ///
    /// The iteration happens in row-major fashion, meaning that i increases monotonically,
    /// and j increases monotonically within each row.
    ///
    /// Examples
    /// --------
    /// ```
    /// # use nalgebra_sparse::csr::CsrMatrix;
    /// let row_offsets = vec![0, 2, 3, 4];
    /// let col_indices = vec![0, 2, 1, 0];
    /// let values = vec![1, 2, 3, 4];
    /// let mut csr = CsrMatrix::try_from_csr_data(3, 4, row_offsets, col_indices, values)
    ///     .unwrap();
    ///
    /// let triplets: Vec<_> = csr.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect();
    /// assert_eq!(triplets, vec![(0, 0, 1), (0, 2, 2), (1, 1, 3), (2, 0, 4)]);
    /// ```
    pub fn triplet_iter(&self) -> CsrTripletIter<T> {
        CsrTripletIter {
            pattern_iter: self.pattern().entries(),
            values_iter: self.values().iter(),
        }
    }

    /// A mutable iterator over non-zero triplets (i, j, v).
    ///
    /// Iteration happens in the same order as for [triplet_iter](#method.triplet_iter).
    ///
    /// Examples
    /// --------
    /// ```
    /// # use nalgebra_sparse::csr::CsrMatrix;
    /// # let row_offsets = vec![0, 2, 3, 4];
    /// # let col_indices = vec![0, 2, 1, 0];
    /// # let values = vec![1, 2, 3, 4];
    /// // Using the same data as in the `triplet_iter` example
    /// let mut csr = CsrMatrix::try_from_csr_data(3, 4, row_offsets, col_indices, values)
    ///     .unwrap();
    ///
    /// // Zero out lower-triangular terms
    /// csr.triplet_iter_mut()
    ///    .filter(|(i, j, _)| j < i)
    ///    .for_each(|(_, _, v)| *v = 0);
    ///
    /// let triplets: Vec<_> = csr.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect();
    /// assert_eq!(triplets, vec![(0, 0, 1), (0, 2, 2), (1, 1, 3), (2, 0, 0)]);
    /// ```
    pub fn triplet_iter_mut(&mut self) -> CsrTripletIterMut<T> {
        let (pattern, values) = self.cs.pattern_and_values_mut();
        CsrTripletIterMut {
            pattern_iter: pattern.entries(),
            values_mut_iter: values.iter_mut(),
        }
    }

    /// Return the row at the given row index.
    ///
    /// Panics
    /// ------
    /// Panics if row index is out of bounds.
    #[inline]
    pub fn row(&self, index: usize) -> CsrRow<T> {
        self.get_row(index).expect("Row index must be in bounds")
    }

    /// Mutable row access for the given row index.
    ///
    /// Panics
    /// ------
    /// Panics if row index is out of bounds.
    #[inline]
    pub fn row_mut(&mut self, index: usize) -> CsrRowMut<T> {
        self.get_row_mut(index)
            .expect("Row index must be in bounds")
    }

    /// Return the row at the given row index, or `None` if out of bounds.
    #[inline]
    pub fn get_row(&self, index: usize) -> Option<CsrRow<T>> {
        self.cs.get_lane(index).map(|lane| CsrRow { lane })
    }

    /// Mutable row access for the given row index, or `None` if out of bounds.
    #[inline]
    pub fn get_row_mut(&mut self, index: usize) -> Option<CsrRowMut<T>> {
        self.cs.get_lane_mut(index).map(|lane| CsrRowMut { lane })
    }

    /// An iterator over rows in the matrix.
    pub fn row_iter(&self) -> CsrRowIter<T> {
        CsrRowIter {
            lane_iter: CsLaneIter::new(self.pattern(), self.values()),
        }
    }

    /// A mutable iterator over rows in the matrix.
    pub fn row_iter_mut(&mut self) -> CsrRowIterMut<T> {
        let (pattern, values) = self.cs.pattern_and_values_mut();
        CsrRowIterMut {
            lane_iter: CsLaneIterMut::new(pattern, values),
        }
    }

    /// Disassembles the CSR matrix into its underlying offset, index and value arrays.
    ///
    /// If the matrix contains the sole reference to the sparsity pattern,
    /// then the data is returned as-is. Otherwise, the sparsity pattern is cloned.
    ///
    /// Examples
    /// --------
    ///
    /// ```
    /// # use nalgebra_sparse::csr::CsrMatrix;
    /// let row_offsets = vec![0, 2, 3, 4];
    /// let col_indices = vec![0, 2, 1, 0];
    /// let values = vec![1, 2, 3, 4];
    /// let mut csr = CsrMatrix::try_from_csr_data(
    ///     3,
    ///     4,
    ///     row_offsets.clone(),
    ///     col_indices.clone(),
    ///     values.clone())
    ///     .unwrap();
    /// let (row_offsets2, col_indices2, values2) = csr.disassemble();
    /// assert_eq!(row_offsets2, row_offsets);
    /// assert_eq!(col_indices2, col_indices);
    /// assert_eq!(values2, values);
    /// ```
    pub fn disassemble(self) -> (Vec<usize>, Vec<usize>, Vec<T>) {
        self.cs.disassemble()
    }

    /// Returns the sparsity pattern and values associated with this matrix.
    pub fn into_pattern_and_values(self) -> (SparsityPattern, Vec<T>) {
        self.cs.into_pattern_and_values()
    }

    /// Returns a reference to the sparsity pattern and a mutable reference to the values.
    #[inline]
    pub fn pattern_and_values_mut(&mut self) -> (&SparsityPattern, &mut [T]) {
        self.cs.pattern_and_values_mut()
    }

    /// Returns a reference to the underlying sparsity pattern.
    pub fn pattern(&self) -> &SparsityPattern {
        self.cs.pattern()
    }

    /// Reinterprets the CSR matrix as its transpose represented by a CSC matrix.
    ///
    /// This operation does not touch the CSR data, and is effectively a no-op.
    pub fn transpose_as_csc(self) -> CscMatrix<T> {
        let (pattern, values) = self.cs.take_pattern_and_values();
        CscMatrix::try_from_pattern_and_values(pattern, values).unwrap()
    }

    /// Returns an entry for the given row/col indices, or `None` if the indices are out of bounds.
    ///
    /// Each call to this function incurs the cost of a binary search among the explicitly
    /// stored column entries for the given row.
    pub fn get_entry(&self, row_index: usize, col_index: usize) -> Option<SparseEntry<T>> {
        self.cs.get_entry(row_index, col_index)
    }

    /// Returns a mutable entry for the given row/col indices, or `None` if the indices are out
    /// of bounds.
    ///
    /// Each call to this function incurs the cost of a binary search among the explicitly
    /// stored column entries for the given row.
    pub fn get_entry_mut(
        &mut self,
        row_index: usize,
        col_index: usize,
    ) -> Option<SparseEntryMut<T>> {
        self.cs.get_entry_mut(row_index, col_index)
    }

    /// Returns an entry for the given row/col indices.
    ///
    /// Same as `get_entry`, except that it directly panics upon encountering row/col indices
    /// out of bounds.
    ///
    /// Panics
    /// ------
    /// Panics if `row_index` or `col_index` is out of bounds.
    pub fn index_entry(&self, row_index: usize, col_index: usize) -> SparseEntry<T> {
        self.get_entry(row_index, col_index)
            .expect("Out of bounds matrix indices encountered")
    }

    /// Returns a mutable entry for the given row/col indices.
    ///
    /// Same as `get_entry_mut`, except that it directly panics upon encountering row/col indices
    /// out of bounds.
    ///
    /// Panics
    /// ------
    /// Panics if `row_index` or `col_index` is out of bounds.
    pub fn index_entry_mut(&mut self, row_index: usize, col_index: usize) -> SparseEntryMut<T> {
        self.get_entry_mut(row_index, col_index)
            .expect("Out of bounds matrix indices encountered")
    }

    /// Returns a triplet of slices `(row_offsets, col_indices, values)` that make up the CSR data.
    pub fn csr_data(&self) -> (&[usize], &[usize], &[T]) {
        self.cs.cs_data()
    }

    /// Returns a triplet of slices `(row_offsets, col_indices, values)` that make up the CSR data,
    /// where the `values` array is mutable.
    pub fn csr_data_mut(&mut self) -> (&[usize], &[usize], &mut [T]) {
        self.cs.cs_data_mut()
    }

    /// Creates a sparse matrix that contains only the explicit entries decided by the
    /// given predicate.
    pub fn filter<P>(&self, predicate: P) -> Self
    where
        T: Clone,
        P: Fn(usize, usize, &T) -> bool,
    {
        Self {
            cs: self
                .cs
                .filter(|row_idx, col_idx, v| predicate(row_idx, col_idx, v)),
        }
    }

    /// Returns a new matrix representing the upper triangular part of this matrix.
    ///
    /// The result includes the diagonal of the matrix.
    pub fn upper_triangle(&self) -> Self
    where
        T: Clone,
    {
        self.filter(|i, j, _| i <= j)
    }

    /// Returns a new matrix representing the lower triangular part of this matrix.
    ///
    /// The result includes the diagonal of the matrix.
    pub fn lower_triangle(&self) -> Self
    where
        T: Clone,
    {
        self.filter(|i, j, _| i >= j)
    }

    /// Returns the diagonal of the matrix as a sparse matrix.
    pub fn diagonal_as_csr(&self) -> Self
    where
        T: Clone,
    {
        Self {
            cs: self.cs.diagonal_as_matrix(),
        }
    }

    /// Compute the transpose of the matrix.
    pub fn transpose(&self) -> CsrMatrix<T>
    where
        T: Scalar,
    {
        CscMatrix::from(self).transpose_as_csr()
    }
}

/// Convert pattern format errors into more meaningful CSR-specific errors.
///
/// This ensures that the terminology is consistent: we are talking about rows and columns,
/// not lanes, major and minor dimensions.
fn pattern_format_error_to_csr_error(err: SparsityPatternFormatError) -> SparseFormatError {
    use SparseFormatError as E;
    use SparseFormatErrorKind as K;
    use SparsityPatternFormatError::DuplicateEntry as PatternDuplicateEntry;
    use SparsityPatternFormatError::*;

    match err {
        InvalidOffsetArrayLength => E::from_kind_and_msg(
            K::InvalidStructure,
            "Length of row offset array is not equal to nrows + 1.",
        ),
        InvalidOffsetFirstLast => E::from_kind_and_msg(
            K::InvalidStructure,
            "First or last row offset is inconsistent with format specification.",
        ),
        NonmonotonicOffsets => E::from_kind_and_msg(
            K::InvalidStructure,
            "Row offsets are not monotonically increasing.",
        ),
        NonmonotonicMinorIndices => E::from_kind_and_msg(
            K::InvalidStructure,
            "Column indices are not monotonically increasing (sorted) within each row.",
        ),
        MinorIndexOutOfBounds => {
            E::from_kind_and_msg(K::IndexOutOfBounds, "Column indices are out of bounds.")
        }
        PatternDuplicateEntry => {
            E::from_kind_and_msg(K::DuplicateEntry, "Matrix data contains duplicate entries.")
        }
    }
}

/// Iterator type for iterating over triplets in a CSR matrix.
#[derive(Debug)]
pub struct CsrTripletIter<'a, T> {
    pattern_iter: SparsityPatternIter<'a>,
    values_iter: Iter<'a, T>,
}

impl<'a, T: Clone> CsrTripletIter<'a, T> {
    /// Adapts the triplet iterator to return owned values.
    ///
    /// The triplet iterator returns references to the values. This method adapts the iterator
    /// so that the values are cloned.
    #[inline]
    pub fn cloned_values(self) -> impl 'a + Iterator<Item = (usize, usize, T)> {
        self.map(|(i, j, v)| (i, j, v.clone()))
    }
}

impl<'a, T> Iterator for CsrTripletIter<'a, T> {
    type Item = (usize, usize, &'a T);

    fn next(&mut self) -> Option<Self::Item> {
        let next_entry = self.pattern_iter.next();
        let next_value = self.values_iter.next();

        match (next_entry, next_value) {
            (Some((i, j)), Some(v)) => Some((i, j, v)),
            _ => None,
        }
    }
}

/// Iterator type for mutably iterating over triplets in a CSR matrix.
#[derive(Debug)]
pub struct CsrTripletIterMut<'a, T> {
    pattern_iter: SparsityPatternIter<'a>,
    values_mut_iter: IterMut<'a, T>,
}

impl<'a, T> Iterator for CsrTripletIterMut<'a, T> {
    type Item = (usize, usize, &'a mut T);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let next_entry = self.pattern_iter.next();
        let next_value = self.values_mut_iter.next();

        match (next_entry, next_value) {
            (Some((i, j)), Some(v)) => Some((i, j, v)),
            _ => None,
        }
    }
}

/// An immutable representation of a row in a CSR matrix.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CsrRow<'a, T> {
    lane: CsLane<'a, T>,
}

/// A mutable representation of a row in a CSR matrix.
///
/// Note that only explicitly stored entries can be mutated. The sparsity pattern belonging
/// to the row cannot be modified.
#[derive(Debug, PartialEq, Eq)]
pub struct CsrRowMut<'a, T> {
    lane: CsLaneMut<'a, T>,
}

/// Implement the methods common to both CsrRow and CsrRowMut
macro_rules! impl_csr_row_common_methods {
    ($name:ty) => {
        impl<'a, T> $name {
            /// The number of global columns in the row.
            #[inline]
            pub fn ncols(&self) -> usize {
                self.lane.minor_dim()
            }

            /// The number of non-zeros in this row.
            #[inline]
            pub fn nnz(&self) -> usize {
                self.lane.nnz()
            }

            /// The column indices corresponding to explicitly stored entries in this row.
            #[inline]
            pub fn col_indices(&self) -> &[usize] {
                self.lane.minor_indices()
            }

            /// The values corresponding to explicitly stored entries in this row.
            #[inline]
            pub fn values(&self) -> &[T] {
                self.lane.values()
            }

            /// Returns an entry for the given global column index.
            ///
            /// Each call to this function incurs the cost of a binary search among the explicitly
            /// stored column entries.
            #[inline]
            pub fn get_entry(&self, global_col_index: usize) -> Option<SparseEntry<T>> {
                self.lane.get_entry(global_col_index)
            }
        }
    };
}

impl_csr_row_common_methods!(CsrRow<'a, T>);
impl_csr_row_common_methods!(CsrRowMut<'a, T>);

impl<'a, T> CsrRowMut<'a, T> {
    /// Mutable access to the values corresponding to explicitly stored entries in this row.
    #[inline]
    pub fn values_mut(&mut self) -> &mut [T] {
        self.lane.values_mut()
    }

    /// Provides simultaneous access to column indices and mutable values corresponding to the
    /// explicitly stored entries in this row.
    ///
    /// This method primarily facilitates low-level access for methods that process data stored
    /// in CSR format directly.
    #[inline]
    pub fn cols_and_values_mut(&mut self) -> (&[usize], &mut [T]) {
        self.lane.indices_and_values_mut()
    }

    /// Returns a mutable entry for the given global column index.
    #[inline]
    pub fn get_entry_mut(&mut self, global_col_index: usize) -> Option<SparseEntryMut<T>> {
        self.lane.get_entry_mut(global_col_index)
    }
}

/// Row iterator for [CsrMatrix](struct.CsrMatrix.html).
pub struct CsrRowIter<'a, T> {
    lane_iter: CsLaneIter<'a, T>,
}

impl<'a, T> Iterator for CsrRowIter<'a, T> {
    type Item = CsrRow<'a, T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.lane_iter.next().map(|lane| CsrRow { lane })
    }
}

/// Mutable row iterator for [CsrMatrix](struct.CsrMatrix.html).
pub struct CsrRowIterMut<'a, T> {
    lane_iter: CsLaneIterMut<'a, T>,
}

impl<'a, T> Iterator for CsrRowIterMut<'a, T>
where
    T: 'a,
{
    type Item = CsrRowMut<'a, T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.lane_iter.next().map(|lane| CsrRowMut { lane })
    }
}