Expand description
Spacetime Extension for nalgebra
§Present Features
- Minkowski space as special case of $n$-dimensional
Lorentzianspace. - Raising/Lowering tensor indices:
Lorentzian::dual/Lorentzian::r_dual/Lorentzian::c_dual. - Metric contraction of degree-1/degree-2 tensors:
Lorentzian::contr/Lorentzian::scalar. - Spacetime
Lorentzian::intervalwithLightConedepiction. - Inertial
OFrameof reference holding boost parameters. - Lorentz boost as
Lorentzian::new_boostmatrix. - Direct Lorentz
Lorentzian::boosttoOFrame::composevelocities. - Wigner
OFrame::rotationandOFrame::axis_anglebetween to-be-composed boosts.
§Future Features
Event4/Velocity4/Momentum4/...equivalents ofPoint4/....- Categorize
Rotation4/PureBoost4/...asBoost4/.... - Wigner
OFrame::rotationandOFrame::axis_angleof an already-composedBoost4. - Distinguish pre/post-rotation and active/passive
Boost4compositions.
Re-exports§
Structs§
- OFrame
- Inertial frame of reference in $n$-dimensional Lorentzian space $\R^{-,+} = \R^{1,n-1}$.
- OMomentum
- Momentum in $n$-dimensional Lorentzian space $\R^{-,+} = \R^{1,n-1}$.
Enums§
- Light
Cone - Spacetime regions regarding an event’s light cone.
Traits§
- Lorentzian
- Extension for $n$-dimensional Lorentzian space $\R^{-,+} = \R^{1,n-1}$ with metric signature in spacelike sign convention.
Type Aliases§
- Frame2
- Inertial frame of reference in $2$-dimensional Lorentzian space $\R^{-,+} = \R^{1,1}$.
- Frame3
- Inertial frame of reference in $3$-dimensional Lorentzian space $\R^{-,+} = \R^{1,2}$.
- Frame4
- Inertial frame of reference in $4$-dimensional Lorentzian space $\R^{-,+} = \R^{1,3}$.
- Frame5
- Inertial frame of reference in $5$-dimensional Lorentzian space $\R^{-,+} = \R^{1,4}$.
- Frame6
- Inertial frame of reference in $6$-dimensional Lorentzian space $\R^{-,+} = \R^{1,5}$.
- Momentum2
- Momentum in $2$-dimensional Lorentzian space $\R^{-,+} = \R^{1,1}$.
- Momentum3
- Momentum in $3$-dimensional Lorentzian space $\R^{-,+} = \R^{1,2}$.
- Momentum4
- Momentum in $4$-dimensional Lorentzian space $\R^{-,+} = \R^{1,3}$.
- Momentum5
- Momentum in $5$-dimensional Lorentzian space $\R^{-,+} = \R^{1,4}$.
- Momentum6
- Momentum in $6$-dimensional Lorentzian space $\R^{-,+} = \R^{1,5}$.