1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
//! This crate provides conversion between [`nalgebra`] and [`numpy`](https://numpy.org/). //! //! Currently, only the conversion from numpy to nalgebra is implemented, //! but the other direction will be added soon. //! //! # Conversion from numpy to nalgebra. //! //! It is possible to create either a view or a copy of a numpy array. //! You can use [`matrix_from_python`] to copy the data into a new matrix, //! or one of [`matrix_slice_from_python`] or [`matrix_slice_mut_from_python`] to create a view. //! //! Keep in mind though that the borrow checker can not enforce rules on data managed by a Python object. //! You could potentially keep an immutable view around in Rust, and then modify the data from Python. //! For this reason, creating any view -- even an immutable one -- is unsafe. //! //! # Examples. //! //! Copy a numpy array to a new fixed size matrix: //! //! ``` //! #![feature(proc_macro_hygiene)] //! use inline_python::{Context, python}; //! use nalgebra_numpy::{matrix_from_python}; //! //! # fn main() -> Result<(), nalgebra_numpy::Error> { //! let gil = pyo3::Python::acquire_gil(); //! let context = Context::new_with_gil(gil.python()).unwrap(); //! python! { //! #![context = &context] //! import numpy as np //! matrix = np.array([ //! [1.0, 2.0, 3.0], //! [4.0, 5.0, 6.0], //! [7.0, 8.0, 9.0], //! ]) //! } //! //! let matrix = context.globals(gil.python()).get_item("matrix").unwrap(); //! let matrix : nalgebra::Matrix3<f64> = matrix_from_python(matrix)?; //! //! assert_eq!(matrix, nalgebra::Matrix3::new( //! 1.0, 2.0, 3.0, //! 4.0, 5.0, 6.0, //! 7.0, 8.0, 9.0, //! )); //! # Ok(()) //! # } //! ``` //! //! Dynamic matrices are also supported: //! //! ``` //! # #![feature(proc_macro_hygiene)] //! # use inline_python::{Context, python}; //! # use nalgebra_numpy::{matrix_from_python}; //! use nalgebra::DMatrix; //! # fn main() -> Result<(), nalgebra_numpy::Error> { //! # let gil = pyo3::Python::acquire_gil(); //! # let context = Context::new_with_gil(gil.python()).unwrap(); //! # python! { //! # #![context = &context] //! # import numpy as np //! # matrix = np.array([ //! # [1.0, 2.0, 3.0], //! # [4.0, 5.0, 6.0], //! # [7.0, 8.0, 9.0], //! # ]) //! # } //! # //! # let matrix = context.globals(gil.python()).get_item("matrix").unwrap(); //! //! // <snip> //! //! let matrix : DMatrix<f64> = matrix_from_python(matrix)?; //! assert_eq!(matrix, DMatrix::from_row_slice(3, 3, &[ //! 1.0, 2.0, 3.0, //! 4.0, 5.0, 6.0, //! 7.0, 8.0, 9.0, //! ])); //! # Ok(()) //! # } //! ``` //! //! And so are partially dynamic matrices: //! //! ``` //! # #![feature(proc_macro_hygiene)] //! # use inline_python::{Context, python}; //! # use nalgebra_numpy::{matrix_from_python}; //! use nalgebra::{MatrixMN, Dynamic, U3}; //! # fn main() -> Result<(), nalgebra_numpy::Error> { //! # let gil = pyo3::Python::acquire_gil(); //! # let context = Context::new_with_gil(gil.python()).unwrap(); //! # python! { //! # #![context = &context] //! # import numpy as np //! # matrix = np.array([ //! # [1.0, 2.0, 3.0], //! # [4.0, 5.0, 6.0], //! # [7.0, 8.0, 9.0], //! # ]) //! # } //! # let matrix = context.globals(gil.python()).get_item("matrix").unwrap(); //! //! // <snip> //! //! let matrix : MatrixMN<f64, U3, Dynamic> = matrix_from_python(matrix)?; //! assert_eq!(matrix, MatrixMN::<f64, U3, Dynamic>::from_row_slice(&[ //! 1.0, 2.0, 3.0, //! 4.0, 5.0, 6.0, //! 7.0, 8.0, 9.0, //! ])); //! # Ok(()) //! # } //! ``` mod from_numpy; pub use from_numpy::*;