1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#[cfg(feature = "serde-serialize")]
use serde;
use num::Zero;
use std::ops::MulAssign;
use alga::general::Real;
use ComplexHelper;
use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN};
use na::dimension::{Dim, U1};
use na::storage::Storage;
use na::allocator::Allocator;
use lapack::fortran as interface;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(serialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D>,
VectorN<N, D>: serde::Serialize,
MatrixN<N, D>: serde::Serialize")))]
#[cfg_attr(feature = "serde-serialize",
serde(bound(deserialize = "DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D>,
VectorN<N, D>: serde::Deserialize<'de>,
MatrixN<N, D>: serde::Deserialize<'de>")))]
#[derive(Clone, Debug)]
pub struct SymmetricEigen<N: Scalar, D: Dim>
where
DefaultAllocator: Allocator<N, D> + Allocator<N, D, D>,
{
pub eigenvectors: MatrixN<N, D>,
pub eigenvalues: VectorN<N, D>,
}
impl<N: Scalar, D: Dim> Copy for SymmetricEigen<N, D>
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
MatrixN<N, D>: Copy,
VectorN<N, D>: Copy,
{
}
impl<N: SymmetricEigenScalar + Real, D: Dim> SymmetricEigen<N, D>
where
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{
pub fn new(m: MatrixN<N, D>) -> Self {
let (vals, vecs) =
Self::do_decompose(m, true).expect("SymmetricEigen: convergence failure.");
SymmetricEigen {
eigenvalues: vals,
eigenvectors: vecs.unwrap(),
}
}
pub fn try_new(m: MatrixN<N, D>) -> Option<Self> {
Self::do_decompose(m, true).map(|(vals, vecs)| SymmetricEigen {
eigenvalues: vals,
eigenvectors: vecs.unwrap(),
})
}
fn do_decompose(
mut m: MatrixN<N, D>,
eigenvectors: bool,
) -> Option<(VectorN<N, D>, Option<MatrixN<N, D>>)> {
assert!(
m.is_square(),
"Unable to compute the eigenvalue decomposition of a non-square matrix."
);
let jobz = if eigenvectors { b'V' } else { b'N' };
let nrows = m.data.shape().0;
let n = nrows.value();
let lda = n as i32;
let mut values = unsafe { Matrix::new_uninitialized_generic(nrows, U1) };
let mut info = 0;
let lwork = N::xsyev_work_size(jobz, b'L', n as i32, m.as_mut_slice(), lda, &mut info);
lapack_check!(info);
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
N::xsyev(
jobz,
b'L',
n as i32,
m.as_mut_slice(),
lda,
values.as_mut_slice(),
&mut work,
lwork,
&mut info,
);
lapack_check!(info);
let vectors = if eigenvectors { Some(m) } else { None };
Some((values, vectors))
}
pub fn eigenvalues(m: MatrixN<N, D>) -> VectorN<N, D> {
Self::do_decompose(m, false)
.expect("SymmetricEigen eigenvalues: convergence failure.")
.0
}
pub fn try_eigenvalues(m: MatrixN<N, D>) -> Option<VectorN<N, D>> {
Self::do_decompose(m, false).map(|res| res.0)
}
#[inline]
pub fn determinant(&self) -> N {
let mut det = N::one();
for e in self.eigenvalues.iter() {
det *= *e;
}
det
}
pub fn recompose(&self) -> MatrixN<N, D> {
let mut u_t = self.eigenvectors.clone();
for i in 0..self.eigenvalues.len() {
let val = self.eigenvalues[i];
u_t.column_mut(i).mul_assign(val);
}
u_t.transpose_mut();
&self.eigenvectors * u_t
}
}
pub trait SymmetricEigenScalar: Scalar {
#[allow(missing_docs)]
fn xsyev(
jobz: u8,
uplo: u8,
n: i32,
a: &mut [Self],
lda: i32,
w: &mut [Self],
work: &mut [Self],
lwork: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32)
-> i32;
}
macro_rules! real_eigensystem_scalar_impl (
($N: ty, $xsyev: path) => (
impl SymmetricEigenScalar for $N {
#[inline]
fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self],
lwork: i32, info: &mut i32) {
$xsyev(jobz, uplo, n, a, lda, w, work, lwork, info)
}
#[inline]
fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32 {
let mut work = [ Zero::zero() ];
let mut w = [ Zero::zero() ];
let lwork = -1 as i32;
$xsyev(jobz, uplo, n, a, lda, &mut w, &mut work, lwork, info);
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
real_eigensystem_scalar_impl!(f32, interface::ssyev);
real_eigensystem_scalar_impl!(f64, interface::dsyev);