nalgebra_glm/ext/quaternion_common.rs
1use na::Unit;
2
3use crate::aliases::Qua;
4use crate::RealNumber;
5
6/// The conjugate of `q`.
7pub fn quat_conjugate<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
8 q.conjugate()
9}
10
11/// The inverse of `q`.
12pub fn quat_inverse<T: RealNumber>(q: &Qua<T>) -> Qua<T> {
13 q.try_inverse().unwrap_or_else(na::zero)
14}
15
16//pub fn quat_isinf<T: RealNumber>(x: &Qua<T>) -> TVec<bool, U4> {
17// x.coords.map(|e| e.is_inf())
18//}
19
20//pub fn quat_isnan<T: RealNumber>(x: &Qua<T>) -> TVec<bool, U4> {
21// x.coords.map(|e| e.is_nan())
22//}
23
24/// Interpolate linearly between `x` and `y`.
25pub fn quat_lerp<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
26 x.lerp(y, a)
27}
28
29//pub fn quat_mix<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
30// x * (T::one() - a) + y * a
31//}
32
33/// Interpolate spherically between `x` and `y`.
34pub fn quat_slerp<T: RealNumber>(x: &Qua<T>, y: &Qua<T>, a: T) -> Qua<T> {
35 Unit::new_normalize(*x)
36 .slerp(&Unit::new_normalize(*y), a)
37 .into_inner()
38}