Struct na::DualQuaternion

source ·
#[repr(C)]
pub struct DualQuaternion<T> { pub real: Quaternion<T>, pub dual: Quaternion<T>, }
Expand description

A dual quaternion.

Indexing

DualQuaternions are stored as [..real, ..dual]. Both of the quaternion components are laid out in i, j, k, w order.

Example


let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);

let dq = DualQuaternion::from_real_and_dual(real, dual);
assert_eq!(dq[0], 2.0);
assert_eq!(dq[1], 3.0);

assert_eq!(dq[4], 6.0);
assert_eq!(dq[7], 5.0);

NOTE: As of December 2020, dual quaternion support is a work in progress. If a feature that you need is missing, feel free to open an issue or a PR. See https://github.com/dimforge/nalgebra/issues/487

Fields§

§real: Quaternion<T>

The real component of the quaternion

§dual: Quaternion<T>

The dual component of the quaternion

Implementations§

source§

impl<T> DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source

pub fn normalize(&self) -> DualQuaternion<T>

Normalizes this quaternion.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);

let dq_normalized = dq.normalize();

relative_eq!(dq_normalized.real.norm(), 1.0);
source

pub fn normalize_mut(&mut self) -> T

Normalizes this quaternion.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);

dq.normalize_mut();

relative_eq!(dq.real.norm(), 1.0);
source

pub fn conjugate(&self) -> DualQuaternion<T>

The conjugate of this dual quaternion, containing the conjugate of the real and imaginary parts..

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);

let conj = dq.conjugate();
assert!(conj.real.i == -2.0 && conj.real.j == -3.0 && conj.real.k == -4.0);
assert!(conj.real.w == 1.0);
assert!(conj.dual.i == -6.0 && conj.dual.j == -7.0 && conj.dual.k == -8.0);
assert!(conj.dual.w == 5.0);
source

pub fn conjugate_mut(&mut self)

Replaces this quaternion by its conjugate.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let mut dq = DualQuaternion::from_real_and_dual(real, dual);

dq.conjugate_mut();
assert!(dq.real.i == -2.0 && dq.real.j == -3.0 && dq.real.k == -4.0);
assert!(dq.real.w == 1.0);
assert!(dq.dual.i == -6.0 && dq.dual.j == -7.0 && dq.dual.k == -8.0);
assert!(dq.dual.w == 5.0);
source

pub fn try_inverse(&self) -> Option<DualQuaternion<T>>where T: RealField,

Inverts this dual quaternion if it is not zero.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let inverse = dq.try_inverse();

assert!(inverse.is_some());
assert_relative_eq!(inverse.unwrap() * dq, DualQuaternion::identity());

//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let dq = DualQuaternion::from_real_and_dual(zero, zero);
let inverse = dq.try_inverse();

assert!(inverse.is_none());
source

pub fn try_inverse_mut(&mut self) -> boolwhere T: RealField,

Inverts this dual quaternion in-place if it is not zero.

Example
let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq = DualQuaternion::from_real_and_dual(real, dual);
let mut dq_inverse = dq;
dq_inverse.try_inverse_mut();

assert_relative_eq!(dq_inverse * dq, DualQuaternion::identity());

//Non-invertible case
let zero = Quaternion::new(0.0, 0.0, 0.0, 0.0);
let mut dq = DualQuaternion::from_real_and_dual(zero, zero);
assert!(!dq.try_inverse_mut());
source

pub fn lerp(&self, other: &DualQuaternion<T>, t: T) -> DualQuaternion<T>

Linear interpolation between two dual quaternions.

Computes self * (1 - t) + other * t.

Example
let dq1 = DualQuaternion::from_real_and_dual(
    Quaternion::new(1.0, 0.0, 0.0, 4.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
let dq2 = DualQuaternion::from_real_and_dual(
    Quaternion::new(2.0, 0.0, 1.0, 0.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
);
assert_eq!(dq1.lerp(&dq2, 0.25), DualQuaternion::from_real_and_dual(
    Quaternion::new(1.25, 0.0, 0.25, 3.0),
    Quaternion::new(0.0, 2.0, 0.0, 0.0)
));
source§

impl<T> DualQuaternion<T>where T: Scalar,

source

pub fn from_real_and_dual( real: Quaternion<T>, dual: Quaternion<T> ) -> DualQuaternion<T>

Creates a dual quaternion from its rotation and translation components.

Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);

let dq = DualQuaternion::from_real_and_dual(rot, trans);
assert_eq!(dq.real.w, 1.0);
source

pub fn identity() -> DualQuaternion<T>where T: SimdRealField,

The dual quaternion multiplicative identity.

Example

let dq1 = DualQuaternion::identity();
let dq2 = DualQuaternion::from_real_and_dual(
    Quaternion::new(1.,2.,3.,4.),
    Quaternion::new(5.,6.,7.,8.)
);

assert_eq!(dq1 * dq2, dq2);
assert_eq!(dq2 * dq1, dq2);
source

pub fn cast<To>(self) -> DualQuaternion<To>where To: Scalar, DualQuaternion<To>: SupersetOf<DualQuaternion<T>>,

Cast the components of self to another type.

Example
let q = DualQuaternion::from_real(Quaternion::new(1.0f64, 2.0, 3.0, 4.0));
let q2 = q.cast::<f32>();
assert_eq!(q2, DualQuaternion::from_real(Quaternion::new(1.0f32, 2.0, 3.0, 4.0)));
source§

impl<T> DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source

pub fn from_real(real: Quaternion<T>) -> DualQuaternion<T>

Creates a dual quaternion from only its real part, with no translation component.

Example
let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);

let dq = DualQuaternion::from_real(rot);
assert_eq!(dq.real.w, 1.0);
assert_eq!(dq.dual.w, 0.0);

Trait Implementations§

source§

impl<T> AbsDiffEq<DualQuaternion<T>> for DualQuaternion<T>where T: RealField<Epsilon = T> + AbsDiffEq<T>,

§

type Epsilon = T

Used for specifying relative comparisons.
source§

fn default_epsilon( ) -> <DualQuaternion<T> as AbsDiffEq<DualQuaternion<T>>>::Epsilon

The default tolerance to use when testing values that are close together. Read more
source§

fn abs_diff_eq( &self, other: &DualQuaternion<T>, epsilon: <DualQuaternion<T> as AbsDiffEq<DualQuaternion<T>>>::Epsilon ) -> bool

A test for equality that uses the absolute difference to compute the approximate equality of two numbers.
§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of [AbsDiffEq::abs_diff_eq].
source§

impl<'a, 'b, T> Add<&'b DualQuaternion<T>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add( self, rhs: &'b DualQuaternion<T> ) -> <&'a DualQuaternion<T> as Add<&'b DualQuaternion<T>>>::Output

Performs the + operation. Read more
source§

impl<'b, T> Add<&'b DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add( self, rhs: &'b DualQuaternion<T> ) -> <DualQuaternion<T> as Add<&'b DualQuaternion<T>>>::Output

Performs the + operation. Read more
source§

impl<'a, T> Add<DualQuaternion<T>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add( self, rhs: DualQuaternion<T> ) -> <&'a DualQuaternion<T> as Add<DualQuaternion<T>>>::Output

Performs the + operation. Read more
source§

impl<T> Add<DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the + operator.
source§

fn add( self, rhs: DualQuaternion<T> ) -> <DualQuaternion<T> as Add<DualQuaternion<T>>>::Output

Performs the + operation. Read more
source§

impl<'b, T> AddAssign<&'b DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn add_assign(&mut self, rhs: &'b DualQuaternion<T>)

Performs the += operation. Read more
source§

impl<T> AddAssign<DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn add_assign(&mut self, rhs: DualQuaternion<T>)

Performs the += operation. Read more
source§

impl<T> AsMut<[T; 8]> for DualQuaternion<T>where T: SimdRealField,

source§

fn as_mut(&mut self) -> &mut [T; 8]

Converts this type into a mutable reference of the (usually inferred) input type.
source§

impl<T> AsRef<[T; 8]> for DualQuaternion<T>where T: SimdRealField,

source§

fn as_ref(&self) -> &[T; 8]

Converts this type into a shared reference of the (usually inferred) input type.
source§

impl<T> Clone for DualQuaternion<T>where T: Clone,

source§

fn clone(&self) -> DualQuaternion<T>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T> Debug for DualQuaternion<T>where T: Debug,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T> Default for DualQuaternion<T>where T: Scalar + Zero,

source§

fn default() -> DualQuaternion<T>

Returns the “default value” for a type. Read more
source§

impl<'a, 'b, T> Div<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Unit<DualQuaternion<T>> ) -> <&'a DualQuaternion<T> as Div<&'b Unit<DualQuaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<'b, T> Div<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div( self, rhs: &'b Unit<DualQuaternion<T>> ) -> <DualQuaternion<T> as Div<&'b Unit<DualQuaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<'a, T> Div<T> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, n: T) -> <&'a DualQuaternion<T> as Div<T>>::Output

Performs the / operation. Read more
source§

impl<T> Div<T> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div(self, n: T) -> <DualQuaternion<T> as Div<T>>::Output

Performs the / operation. Read more
source§

impl<'a, T> Div<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Unit<DualQuaternion<T>> ) -> <&'a DualQuaternion<T> as Div<Unit<DualQuaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<T> Div<Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the / operator.
source§

fn div( self, rhs: Unit<DualQuaternion<T>> ) -> <DualQuaternion<T> as Div<Unit<DualQuaternion<T>>>>::Output

Performs the / operation. Read more
source§

impl<'b, T> DivAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: &'b Unit<DualQuaternion<T>>)

Performs the /= operation. Read more
source§

impl<T> DivAssign<T> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn div_assign(&mut self, n: T)

Performs the /= operation. Read more
source§

impl<T> DivAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn div_assign(&mut self, rhs: Unit<DualQuaternion<T>>)

Performs the /= operation. Read more
source§

impl<T> Index<usize> for DualQuaternion<T>where T: SimdRealField,

§

type Output = T

The returned type after indexing.
source§

fn index(&self, i: usize) -> &<DualQuaternion<T> as Index<usize>>::Output

Performs the indexing (container[index]) operation. Read more
source§

impl<T> IndexMut<usize> for DualQuaternion<T>where T: SimdRealField,

source§

fn index_mut(&mut self, i: usize) -> &mut T

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<'a, 'b, T> Mul<&'b DualQuaternion<T>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b DualQuaternion<T> ) -> <&'a DualQuaternion<T> as Mul<&'b DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T> Mul<&'b DualQuaternion<T>> for &'a Unit<DualQuaternion<T>>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b DualQuaternion<T> ) -> <&'a Unit<DualQuaternion<T>> as Mul<&'b DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<'b, T> Mul<&'b DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b DualQuaternion<T> ) -> <DualQuaternion<T> as Mul<&'b DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<'b, T> Mul<&'b DualQuaternion<T>> for Unit<DualQuaternion<T>>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b DualQuaternion<T> ) -> <Unit<DualQuaternion<T>> as Mul<&'b DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T> Mul<&'b Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Unit<DualQuaternion<T>> ) -> <&'a DualQuaternion<T> as Mul<&'b Unit<DualQuaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<'b, T> Mul<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: &'b Unit<DualQuaternion<T>> ) -> <DualQuaternion<T> as Mul<&'b Unit<DualQuaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<'a, T> Mul<DualQuaternion<T>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: DualQuaternion<T> ) -> <&'a DualQuaternion<T> as Mul<DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<'a, T> Mul<DualQuaternion<T>> for &'a Unit<DualQuaternion<T>>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: DualQuaternion<T> ) -> <&'a Unit<DualQuaternion<T>> as Mul<DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<T> Mul<DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: DualQuaternion<T> ) -> <DualQuaternion<T> as Mul<DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<T> Mul<DualQuaternion<T>> for Unit<DualQuaternion<T>>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: DualQuaternion<T> ) -> <Unit<DualQuaternion<T>> as Mul<DualQuaternion<T>>>::Output

Performs the * operation. Read more
source§

impl<'a, T> Mul<T> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, n: T) -> <&'a DualQuaternion<T> as Mul<T>>::Output

Performs the * operation. Read more
source§

impl<T> Mul<T> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, n: T) -> <DualQuaternion<T> as Mul<T>>::Output

Performs the * operation. Read more
source§

impl<'a, T> Mul<Unit<DualQuaternion<T>>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Unit<DualQuaternion<T>> ) -> <&'a DualQuaternion<T> as Mul<Unit<DualQuaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<T> Mul<Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul( self, rhs: Unit<DualQuaternion<T>> ) -> <DualQuaternion<T> as Mul<Unit<DualQuaternion<T>>>>::Output

Performs the * operation. Read more
source§

impl<'b, T> MulAssign<&'b DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: &'b DualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<'b, T> MulAssign<&'b Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: &'b Unit<DualQuaternion<T>>)

Performs the *= operation. Read more
source§

impl<T> MulAssign<DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: DualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<T> MulAssign<T> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn mul_assign(&mut self, n: T)

Performs the *= operation. Read more
source§

impl<T> MulAssign<Unit<DualQuaternion<T>>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn mul_assign(&mut self, rhs: Unit<DualQuaternion<T>>)

Performs the *= operation. Read more
source§

impl<'a, T> Neg for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn neg(self) -> <&'a DualQuaternion<T> as Neg>::Output

Performs the unary - operation. Read more
source§

impl<T> Neg for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn neg(self) -> <DualQuaternion<T> as Neg>::Output

Performs the unary - operation. Read more
source§

impl<T> Normed for DualQuaternion<T>where T: SimdRealField,

§

type Norm = <T as SimdComplexField>::SimdRealField

The type of the norm.
source§

fn norm(&self) -> <T as SimdComplexField>::SimdRealField

Computes the norm.
source§

fn norm_squared(&self) -> <T as SimdComplexField>::SimdRealField

Computes the squared norm.
source§

fn scale_mut(&mut self, n: <DualQuaternion<T> as Normed>::Norm)

Multiply self by n.
source§

fn unscale_mut(&mut self, n: <DualQuaternion<T> as Normed>::Norm)

Divides self by n.
source§

impl<T> One for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn one() -> DualQuaternion<T>

Returns the multiplicative identity element of Self, 1. Read more
source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> boolwhere Self: PartialEq<Self>,

Returns true if self is equal to the multiplicative identity. Read more
source§

impl<T> PartialEq<DualQuaternion<T>> for DualQuaternion<T>where T: Scalar,

source§

fn eq(&self, right: &DualQuaternion<T>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T> RelativeEq<DualQuaternion<T>> for DualQuaternion<T>where T: RealField<Epsilon = T> + RelativeEq<T>,

source§

fn default_max_relative( ) -> <DualQuaternion<T> as AbsDiffEq<DualQuaternion<T>>>::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
source§

fn relative_eq( &self, other: &DualQuaternion<T>, epsilon: <DualQuaternion<T> as AbsDiffEq<DualQuaternion<T>>>::Epsilon, max_relative: <DualQuaternion<T> as AbsDiffEq<DualQuaternion<T>>>::Epsilon ) -> bool

A test for equality that uses a relative comparison if the values are far apart.
§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

The inverse of [RelativeEq::relative_eq].
source§

impl<'a, 'b, T> Sub<&'b DualQuaternion<T>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub( self, rhs: &'b DualQuaternion<T> ) -> <&'a DualQuaternion<T> as Sub<&'b DualQuaternion<T>>>::Output

Performs the - operation. Read more
source§

impl<'b, T> Sub<&'b DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub( self, rhs: &'b DualQuaternion<T> ) -> <DualQuaternion<T> as Sub<&'b DualQuaternion<T>>>::Output

Performs the - operation. Read more
source§

impl<'a, T> Sub<DualQuaternion<T>> for &'a DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub( self, rhs: DualQuaternion<T> ) -> <&'a DualQuaternion<T> as Sub<DualQuaternion<T>>>::Output

Performs the - operation. Read more
source§

impl<T> Sub<DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

§

type Output = DualQuaternion<T>

The resulting type after applying the - operator.
source§

fn sub( self, rhs: DualQuaternion<T> ) -> <DualQuaternion<T> as Sub<DualQuaternion<T>>>::Output

Performs the - operation. Read more
source§

impl<'b, T> SubAssign<&'b DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn sub_assign(&mut self, rhs: &'b DualQuaternion<T>)

Performs the -= operation. Read more
source§

impl<T> SubAssign<DualQuaternion<T>> for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn sub_assign(&mut self, rhs: DualQuaternion<T>)

Performs the -= operation. Read more
source§

impl<T1, T2> SubsetOf<DualQuaternion<T2>> for DualQuaternion<T1>where T1: SimdRealField, T2: SimdRealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> DualQuaternion<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(dq: &DualQuaternion<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(dq: &DualQuaternion<T2>) -> DualQuaternion<T1>

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T> UlpsEq<DualQuaternion<T>> for DualQuaternion<T>where T: RealField<Epsilon = T> + UlpsEq<T>,

source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
source§

fn ulps_eq( &self, other: &DualQuaternion<T>, epsilon: <DualQuaternion<T> as AbsDiffEq<DualQuaternion<T>>>::Epsilon, max_ulps: u32 ) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of [UlpsEq::ulps_eq].
source§

impl<T> Zero for DualQuaternion<T>where T: SimdRealField, <T as SimdValue>::Element: SimdRealField,

source§

fn zero() -> DualQuaternion<T>

Returns the additive identity element of Self, 0. Read more
source§

fn is_zero(&self) -> bool

Returns true if self is equal to the additive identity.
source§

fn set_zero(&mut self)

Sets self to the additive identity element of Self, 0.
source§

impl<T> Copy for DualQuaternion<T>where T: Copy,

source§

impl<T> Eq for DualQuaternion<T>where T: Scalar + Eq,

Auto Trait Implementations§

§

impl<T> RefUnwindSafe for DualQuaternion<T>where T: RefUnwindSafe,

§

impl<T> Send for DualQuaternion<T>where T: Send,

§

impl<T> Sync for DualQuaternion<T>where T: Sync,

§

impl<T> Unpin for DualQuaternion<T>where T: Unpin,

§

impl<T> UnwindSafe for DualQuaternion<T>where T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoPnt<OPoint<T, Const<2>>> for Twhere T: Scalar,

source§

fn into_pnt(self) -> OPoint<T, Const<2>>

source§

impl<T> IntoPnt<OPoint<T, Const<3>>> for Twhere T: Scalar,

source§

fn into_pnt(self) -> OPoint<T, Const<3>>

source§

impl<T> IntoPnt<OPoint<T, Const<4>>> for Twhere T: Scalar,

source§

fn into_pnt(self) -> OPoint<T, Const<4>>

source§

impl<V> IntoPnt<V> for V

source§

fn into_pnt(self) -> V

source§

impl<T> IntoVec<Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>> for Twhere T: Scalar,

source§

fn into_vec(self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>

source§

impl<T> IntoVec<Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>> for Twhere T: Scalar,

source§

fn into_vec(self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>

source§

impl<T> IntoVec<Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>> for Twhere T: Scalar,

source§

fn into_vec(self) -> Matrix<T, Const<4>, Const<1>, ArrayStorage<T, 4, 1>>

source§

impl<V> IntoVec<V> for V

source§

fn into_vec(self) -> V

source§

impl<T> JoinPnt<T, OPoint<T, Const<2>>> for Twhere T: Scalar,

§

type Output = OPoint<T, Const<3>>

source§

fn join(self, v: OPoint<T, Const<2>>) -> OPoint<T, Const<3>>

source§

impl<T> JoinPnt<T, OPoint<T, Const<3>>> for Twhere T: Scalar,

§

type Output = OPoint<T, Const<4>>

source§

fn join(self, v: OPoint<T, Const<3>>) -> OPoint<T, Const<4>>

source§

impl<T> JoinPnt<T, T> for Twhere T: Scalar,

§

type Output = OPoint<T, Const<2>>

source§

fn join(self, v: T) -> OPoint<T, Const<2>>

source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T, Right> ClosedAdd<Right> for Twhere T: Add<Right, Output = T> + AddAssign<Right>,

source§

impl<T, Right> ClosedDiv<Right> for Twhere T: Div<Right, Output = T> + DivAssign<Right>,

source§

impl<T, Right> ClosedMul<Right> for Twhere T: Mul<Right, Output = T> + MulAssign<Right>,

source§

impl<T> ClosedNeg for Twhere T: Neg<Output = T>,

source§

impl<T, Right> ClosedSub<Right> for Twhere T: Sub<Right, Output = T> + SubAssign<Right>,

source§

impl<T> Scalar for Twhere T: 'static + Clone + PartialEq<T> + Debug,