[][src]Struct na::Additive

pub struct Additive;

The addition operator, commonly symbolized by +.

Trait Implementations

impl<N, R, C> TwoSidedInverse<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + ClosedNeg,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

impl<N> TwoSidedInverse<Additive> for Quaternion<N> where
    N: RealField
[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl<N> AbstractSemigroup<Additive> for Quaternion<N> where
    N: RealField
[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, R, C> AbstractSemigroup<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + AbstractSemigroup<Additive> + ClosedAdd<N>,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N> AbstractModule<Additive, Additive, Multiplicative> for Quaternion<N> where
    N: RealField
[src]

type AbstractRing = N

The underlying scalar field.

impl<N, R, C> AbstractModule<Additive, Additive, Multiplicative> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + RingCommutative,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

type AbstractRing = N

The underlying scalar field.

impl<N> AbstractGroup<Additive> for Quaternion<N> where
    N: RealField
[src]

impl<N, R, C> AbstractGroup<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + AbstractGroup<Additive> + Zero + ClosedAdd<N> + ClosedNeg,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

impl<N> AbstractMonoid<Additive> for Quaternion<N> where
    N: RealField
[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, R, C> AbstractMonoid<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + AbstractMonoid<Additive> + Zero + ClosedAdd<N>,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, R, C> AbstractGroupAbelian<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + AbstractGroupAbelian<Additive> + Zero + ClosedAdd<N> + ClosedNeg,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl<N> AbstractGroupAbelian<Additive> for Quaternion<N> where
    N: RealField
[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl<N> AbstractQuasigroup<Additive> for Quaternion<N> where
    N: RealField
[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N, R, C> AbstractQuasigroup<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + AbstractQuasigroup<Additive> + ClosedAdd<N> + ClosedNeg,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N, R, C> AbstractMagma<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + ClosedAdd<N>,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N> AbstractMagma<Additive> for Quaternion<N> where
    N: RealField
[src]

fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, R, C> Identity<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + Zero,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

fn id(O) -> Self[src]

Specific identity.

impl<N> Identity<Additive> for Quaternion<N> where
    N: RealField
[src]

fn id(O) -> Self[src]

Specific identity.

impl<N, R, C> AbstractLoop<Additive> for Matrix<N, R, C, <DefaultAllocator as Allocator<N, R, C>>::Buffer> where
    C: DimName,
    N: Scalar + AbstractLoop<Additive> + Zero + ClosedAdd<N> + ClosedNeg,
    R: DimName,
    DefaultAllocator: Allocator<N, R, C>, 
[src]

impl<N> AbstractLoop<Additive> for Quaternion<N> where
    N: RealField
[src]

impl<N> AbstractMonoid<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> TwoSidedInverse<Additive> for Complex<N> where
    N: TwoSidedInverse<Additive>, 
[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl Clone for Additive[src]

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl<N> AbstractMagma<Additive> for Complex<N> where
    N: AbstractMagma<Additive>, 
[src]

fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N> AbstractGroupAbelian<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl Copy for Additive[src]

impl<N> AbstractField<Additive, Multiplicative> for Complex<N> where
    N: ClosedNeg + AbstractField<Additive, Multiplicative> + Clone + Num
[src]

impl Identity<Additive> for f64[src]

fn id(O) -> Self[src]

Specific identity.

impl<N> Identity<Additive> for Complex<N> where
    N: Identity<Additive>, 
[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for i64[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for u16[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for u64[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for usize[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for u8[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for i16[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for i32[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for u32[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for i8[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for isize[src]

fn id(O) -> Self[src]

Specific identity.

impl Identity<Additive> for f32[src]

fn id(O) -> Self[src]

Specific identity.

impl<N> AbstractLoop<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

impl<N> AbstractRingCommutative<Additive, Multiplicative> for Complex<N> where
    N: ClosedNeg + AbstractRingCommutative<Additive, Multiplicative> + Clone + Num
[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl<N> AbstractSemigroup<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N> AbstractRing<Additive, Multiplicative> for Complex<N> where
    N: ClosedNeg + AbstractRing<Additive, Multiplicative> + Clone + Num
[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl Operator for Additive[src]

impl<N> AbstractModule<Additive, Additive, Multiplicative> for Complex<N> where
    N: ClosedNeg + AbstractRingCommutative<Additive, Multiplicative> + Num
[src]

type AbstractRing = N

The underlying scalar field.

impl<N> AbstractGroup<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

impl<N> AbstractQuasigroup<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

Auto Trait Implementations

impl Send for Additive

impl Sync for Additive

Blanket Implementations

impl<V> IntoVec<V> for V[src]

impl<V> IntoPnt<V> for V[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]