[][src]Struct na::geometry::Isometry

#[repr(C)]
pub struct Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
{ pub rotation: R, pub translation: Translation<N, D>, // some fields omitted }

A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.

Fields

rotation: R

The pure rotational part of this isometry.

translation: Translation<N, D>

The pure translational part of this isometry.

Methods

impl<N, D, R> Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

pub fn from_parts(
    translation: Translation<N, D>,
    rotation: R
) -> Isometry<N, D, R>
[src]

Creates a new isometry from its rotational and translational parts.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
let iso = Isometry3::from_parts(tra, rot);

assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);

pub fn inverse(&self) -> Isometry<N, D, R>[src]

Inverts self.

Example

let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let inv = iso.inverse();
let pt = Point2::new(1.0, 2.0);

assert_eq!(inv * (iso * pt), pt);

pub fn inverse_mut(&mut self)[src]

Inverts self in-place.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let pt = Point2::new(1.0, 2.0);
let transformed_pt = iso * pt;
iso.inverse_mut();

assert_eq!(iso * transformed_pt, pt);

pub fn append_translation_mut(&mut self, t: &Translation<N, D>)[src]

Appends to self the given translation in-place.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let tra = Translation2::new(3.0, 4.0);
// Same as `iso = tra * iso`.
iso.append_translation_mut(&tra);

assert_eq!(iso.translation, Translation2::new(4.0, 6.0));

pub fn append_rotation_mut(&mut self, r: &R)[src]

Appends to self the given rotation in-place.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
let rot = UnitComplex::new(f32::consts::PI / 2.0);
// Same as `iso = rot * iso`.
iso.append_rotation_mut(&rot);

assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);

pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>)[src]

Appends in-place to self a rotation centered at the point p, i.e., the rotation that lets p invariant.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
let pt = Point2::new(1.0, 0.0);
iso.append_rotation_wrt_point_mut(&rot, &pt);

assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);

pub fn append_rotation_wrt_center_mut(&mut self, r: &R)[src]

Appends in-place to self a rotation centered at the point with coordinates self.translation.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
iso.append_rotation_wrt_center_mut(&rot);

// The translation part should not have changed.
assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));

pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>[src]

Transform the given point by this isometry.

This is the same as the multiplication self * pt.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);

pub fn transform_vector(
    &self,
    v: &Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
) -> Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
[src]

Transform the given vector by this isometry, ignoring the translation component of the isometry.

This is the same as the multiplication self * v.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);

pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>[src]

Transform the given point by the inverse of this isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);

pub fn inverse_transform_vector(
    &self,
    v: &Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
) -> Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
[src]

Transform the given vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);

impl<N, D, R> Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

pub fn to_homogeneous(
    &self
) -> Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer> where
    D: DimNameAdd<U1>,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>, 
[src]

Converts this isometry into its equivalent homogeneous transformation matrix.

Example

let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5,      10.0,
                            0.5,       0.8660254, 20.0,
                            0.0,       0.0,       1.0);

assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);

impl<N, D, R> Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

pub fn identity() -> Isometry<N, D, R>[src]

Creates a new identity isometry.

Example


let iso = Isometry2::identity();
let pt = Point2::new(1.0, 2.0);
assert_eq!(iso * pt, pt);

let iso = Isometry3::identity();
let pt = Point3::new(1.0, 2.0, 3.0);
assert_eq!(iso * pt, pt);

pub fn rotation_wrt_point(r: R, p: Point<N, D>) -> Isometry<N, D, R>[src]

The isometry that applies the rotation r with its axis passing through the point p. This effectively lets p invariant.

Example

let rot = UnitComplex::new(f32::consts::PI);
let pt = Point2::new(1.0, 0.0);
let iso = Isometry2::rotation_wrt_point(rot, pt);

assert_eq!(iso * pt, pt); // The rotation center is not affected.
assert_relative_eq!(iso * Point2::new(1.0, 2.0), Point2::new(1.0, -2.0), epsilon = 1.0e-6);

impl<N> Isometry<N, U2, Rotation<N, U2>> where
    N: RealField
[src]

pub fn new(
    translation: Matrix<N, U2, U1, <DefaultAllocator as Allocator<N, U2, U1>>::Buffer>,
    angle: N
) -> Isometry<N, U2, Rotation<N, U2>>
[src]

Creates a new 2D isometry from a translation and a rotation angle.

Its rotational part is represented as a 2x2 rotation matrix.

Example

let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);

assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));

pub fn translation(x: N, y: N) -> Isometry<N, U2, Rotation<N, U2>>[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(angle: N) -> Isometry<N, U2, Rotation<N, U2>>[src]

Creates a new isometry from the given rotation angle.

impl<N> Isometry<N, U2, Unit<Complex<N>>> where
    N: RealField
[src]

pub fn new(
    translation: Matrix<N, U2, U1, <DefaultAllocator as Allocator<N, U2, U1>>::Buffer>,
    angle: N
) -> Isometry<N, U2, Unit<Complex<N>>>
[src]

Creates a new 2D isometry from a translation and a rotation angle.

Its rotational part is represented as an unit complex number.

Example

let iso = IsometryMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);

assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));

pub fn translation(x: N, y: N) -> Isometry<N, U2, Unit<Complex<N>>>[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(angle: N) -> Isometry<N, U2, Unit<Complex<N>>>[src]

Creates a new isometry from the given rotation angle.

impl<N> Isometry<N, U3, Rotation<N, U3>> where
    N: RealField
[src]

pub fn new(
    translation: Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>,
    axisangle: Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Rotation<N, U3>>
[src]

Creates a new isometry from a translation and a rotation axis-angle.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

pub fn translation(x: N, y: N, z: N) -> Isometry<N, U3, Rotation<N, U3>>[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(
    axisangle: Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Rotation<N, U3>>
[src]

Creates a new isometry from the given rotation angle.

pub fn face_towards(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Rotation<N, U3>>
[src]

Creates an isometry that corresponds to the local frame of an observer standing at the point eye and looking toward target.

It maps the z axis to the view direction target - eyeand the origin to the eye.

Arguments

  • eye - The observer position.
  • target - The target position.
  • up - Vertical direction. The only requirement of this parameter is to not be collinear to eye - at. Non-collinearity is not checked.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

pub fn new_observer_frame(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Rotation<N, U3>>
[src]

Deprecated:

renamed to face_towards

Deprecated: Use Isometry::face_towards instead.

pub fn look_at_rh(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Rotation<N, U3>>
[src]

Builds a right-handed look-at view matrix.

It maps the view direction target - eye to the negative z axis to and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local -z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

pub fn look_at_lh(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Rotation<N, U3>>
[src]

Builds a left-handed look-at view matrix.

It maps the view direction target - eye to the positive z axis and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

impl<N> Isometry<N, U3, Unit<Quaternion<N>>> where
    N: RealField
[src]

pub fn new(
    translation: Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>,
    axisangle: Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Unit<Quaternion<N>>>
[src]

Creates a new isometry from a translation and a rotation axis-angle.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

pub fn translation(x: N, y: N, z: N) -> Isometry<N, U3, Unit<Quaternion<N>>>[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(
    axisangle: Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Unit<Quaternion<N>>>
[src]

Creates a new isometry from the given rotation angle.

pub fn face_towards(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Unit<Quaternion<N>>>
[src]

Creates an isometry that corresponds to the local frame of an observer standing at the point eye and looking toward target.

It maps the z axis to the view direction target - eyeand the origin to the eye.

Arguments

  • eye - The observer position.
  • target - The target position.
  • up - Vertical direction. The only requirement of this parameter is to not be collinear to eye - at. Non-collinearity is not checked.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

pub fn new_observer_frame(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Unit<Quaternion<N>>>
[src]

Deprecated:

renamed to face_towards

Deprecated: Use Isometry::face_towards instead.

pub fn look_at_rh(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Unit<Quaternion<N>>>
[src]

Builds a right-handed look-at view matrix.

It maps the view direction target - eye to the negative z axis to and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local -z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

pub fn look_at_lh(
    eye: &Point<N, U3>,
    target: &Point<N, U3>,
    up: &Matrix<N, U3, U1, <DefaultAllocator as Allocator<N, U3, U1>>::Buffer>
) -> Isometry<N, U3, Unit<Quaternion<N>>>
[src]

Builds a left-handed look-at view matrix.

It maps the view direction target - eye to the positive z axis and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

Trait Implementations

impl<N, D, R> MulAssign<R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> MulAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, R> MulAssign<&'b Translation<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, R> MulAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, C, R> MulAssign<&'b Isometry<N, D, R>> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, C, R> MulAssign<Isometry<N, D, R>> for Transform<N, D, C> where
    C: TCategory,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> MulAssign<Translation<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, R> MulAssign<&'b R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, R> MulAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> MulAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> DirectIsometry<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> AbstractSemigroup<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N, D, R> Transformation<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> Clone for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Clone + Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl<N, D, R> PartialEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>> + PartialEq<R>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

#[must_use]
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]

This method tests for !=.

impl<N, D, R> AbstractGroup<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> RelativeEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>> + RelativeEq<R, Epsilon = <N as AbsDiffEq<N>>::Epsilon>,
    DefaultAllocator: Allocator<N, D, U1>,
    <N as AbsDiffEq<N>>::Epsilon: Copy
[src]

fn relative_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool

The inverse of ApproxEq::relative_eq.

impl<N, D, R> DivAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, R> DivAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, R> DivAssign<&'b R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> DivAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> DivAssign<R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'b, N, D, R> DivAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> Similarity<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Scaling = Id<Multiplicative>

The type of the pure (uniform) scaling part of this similarity transformation.

fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<N, D, R> Debug for Isometry<N, D, R> where
    D: DimName + Debug,
    N: Debug + RealField,
    R: Debug,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> Display for Isometry<N, D, R> where
    D: DimName,
    N: Display + RealField,
    R: Display,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<usize, D, U1>, 
[src]

impl<N, D, R> AbstractMonoid<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N, D, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Rotation = R

Type of the first rotation to be applied.

type NonUniformScaling = Id<Multiplicative>

Type of the non-uniform scaling to be applied.

type Translation = Translation<N, D>

The type of the pure translation part of this affine transformation.

impl<N1, N2, D, R> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Isometry<N1, D, R> where
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N1, D>> + SubsetOf<Matrix<N1, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N1, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> + SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N1, D, U1>,
    DefaultAllocator: Allocator<N1, D, D>,
    DefaultAllocator: Allocator<N1, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<(usize, usize), D, U1>,
    DefaultAllocator: Allocator<N2, D, D>,
    DefaultAllocator: Allocator<N2, D, U1>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D> where
    D: DimName,
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N2, D>> + SupersetOf<Rotation<N1, D>>,
    DefaultAllocator: Allocator<N1, D, D>,
    DefaultAllocator: Allocator<N2, D, U1>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D> where
    D: DimName,
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D, U1>,
    DefaultAllocator: Allocator<N2, D, U1>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for Unit<Complex<N1>> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N2, U2>> + SupersetOf<Unit<Complex<N1>>>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1> where
    D: DimName,
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
    R2: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D, U1>,
    DefaultAllocator: Allocator<N2, D, U1>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, R> SubsetOf<Isometry<N2, U3, R>> for Unit<Quaternion<N1>> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N2, U3>> + SupersetOf<Unit<Quaternion<N1>>>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Isometry<N1, D, R> where
    C: SuperTCategoryOf<TAffine>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N1, D>> + SubsetOf<Matrix<N1, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N1, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> + SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N1, D, U1>,
    DefaultAllocator: Allocator<N1, D, D>,
    DefaultAllocator: Allocator<N1, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<(usize, usize), D, U1>,
    DefaultAllocator: Allocator<N2, D, D>,
    DefaultAllocator: Allocator<N2, D, U1>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1, D, R1> where
    D: DimName,
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
    R2: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D, U1>,
    DefaultAllocator: Allocator<N2, D, U1>, 
[src]

fn from_superset(element: &T) -> Option<Self>[src]

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N, D, R> Hash for Isometry<N, D, R> where
    D: DimName + Hash,
    N: Hash + RealField,
    R: Hash,
    DefaultAllocator: Allocator<N, D, U1>,
    <DefaultAllocator as Allocator<N, D, U1>>::Buffer: Hash
[src]

fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl<N, D, R> One for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

fn one() -> Isometry<N, D, R>[src]

Creates a new identity isometry.

fn set_one(&mut self)[src]

Sets self to the multiplicative identity element of Self, 1.

fn is_one(&self) -> bool where
    Self: PartialEq<Self>, 
[src]

Returns true if self is equal to the multiplicative identity. Read more

impl<N, D, R> From<Isometry<N, D, R>> for Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer> where
    D: DimName + DimNameAdd<U1>,
    N: RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> AbstractQuasigroup<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl<N, D, R> Eq for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>> + Eq,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<'a, N, D, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, Unit<Complex<N>>>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the * operator.

impl<N> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'b, N> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for &'a Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, Unit<Complex<N>>>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Isometry<N, D, R>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Translation<N, D>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Isometry<N, D, R>> for &'a Translation<N, D> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N, D, R> Mul<R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N, D, C, R> Mul<Transform<N, D, C>> for Isometry<N, D, R> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, <D as DimNameAdd<U1>>::Output>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Similarity<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Translation<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, C, R> Mul<&'b Isometry<N, D, R>> for &'a Transform<N, D, C> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>

The resulting type after applying the * operator.

impl<'b, N, D> Mul<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<N> Mul<Isometry<N, U2, Unit<Complex<N>>>> for Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, Unit<Complex<N>>>

The resulting type after applying the * operator.

impl<N, D, C, R> Mul<Isometry<N, D, R>> for Transform<N, D, C> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Isometry<N, D, R>> for &'a Translation<N, D> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N, D> Mul<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N, D, C, R> Mul<&'b Isometry<N, D, R>> for Transform<N, D, C> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<'a, N, D, C, R> Mul<Transform<N, D, C>> for &'a Isometry<N, D, R> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, <D as DimNameAdd<U1>>::Output>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, C, R> Mul<&'b Transform<N, D, C>> for &'a Isometry<N, D, R> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, <D as DimNameAdd<U1>>::Output>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N, D> Mul<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<'b, N, D, C, R> Mul<&'b Transform<N, D, C>> for Isometry<N, D, R> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, <D as DimNameAdd<U1>>::Output>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<N, D, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<R> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Isometry<N, D, R>> for Translation<N, D> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, N, D, R> Mul<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N, D, C, R> Mul<Isometry<N, D, R>> for &'a Transform<N, D, C> where
    C: TCategoryMul<TAffine>,
    D: DimNameAdd<U1>,
    N: Scalar + Zero + One + ClosedAdd<N> + ClosedMul<N> + RealField,
    R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
    DefaultAllocator: Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, U1>, 
[src]

type Output = Transform<N, D, <C as TCategoryMul<TAffine>>::Representative>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Translation<N, D>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N, D, R> Mul<&'b Translation<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the * operator.

impl<N, D> Mul<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<'a, N> Mul<Isometry<N, U2, Unit<Complex<N>>>> for &'a Unit<Complex<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, Unit<Complex<N>>>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N, D, R> Mul<&'b R> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N, D, R> Isometry<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> UlpsEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>> + UlpsEq<R, Epsilon = <N as AbsDiffEq<N>>::Epsilon>,
    DefaultAllocator: Allocator<N, D, U1>,
    <N as AbsDiffEq<N>>::Epsilon: Copy
[src]

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of ApproxEq::ulps_eq.

impl<N, D, R> Div<Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<N, D, R> Div<R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, N> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the / operator.

impl<'b, N, D, R> Div<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'b, N, D> Div<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<'b, N, D, R> Div<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<N, D, R> Div<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, N, D, R> Div<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N, D, R> Div<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N, D, R> Div<&'b R> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, N, D, R> Div<R> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N, D, R> Div<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<N, D> Div<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<'b, N, D, R> Div<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, N, D> Div<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<'b, N, D, R> Div<&'b R> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, N, D, R> Div<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the / operator.

impl<N, D, R> Div<Similarity<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N, D> Div<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    D: DimName,
    N: RealField,
    DefaultAllocator: Allocator<N, D, D>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<N> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the / operator.

impl<'a, 'b, N, D, R> Div<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, N, D, R> Div<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'b, N> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for Unit<Quaternion<N>> where
    N: RealField,
    DefaultAllocator: Allocator<N, U4, U1>,
    DefaultAllocator: Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, Unit<Quaternion<N>>>

The resulting type after applying the / operator.

impl<N, D, R> Copy for Isometry<N, D, R> where
    D: DimName + Copy,
    N: RealField,
    R: Copy + Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>,
    <DefaultAllocator as Allocator<N, D, U1>>::Buffer: Copy
[src]

impl<N, D, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

impl<N, D, R> AbsDiffEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>> + AbsDiffEq<R, Epsilon = <N as AbsDiffEq<N>>::Epsilon>,
    DefaultAllocator: Allocator<N, D, U1>,
    <N as AbsDiffEq<N>>::Epsilon: Copy
[src]

type Epsilon = <N as AbsDiffEq<N>>::Epsilon

Used for specifying relative comparisons.

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of ApproxEq::abs_diff_eq.

impl<N, D, R> AbstractMagma<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

fn op(&self, O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N, D, R> Identity<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

fn id(O) -> Self[src]

Specific identity.

impl<N, D, R> AbstractLoop<Multiplicative> for Isometry<N, D, R> where
    D: DimName,
    N: RealField,
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D, U1>, 
[src]

Auto Trait Implementations

impl<N, D, R> !Send for Isometry<N, D, R>

impl<N, D, R> !Sync for Isometry<N, D, R>

Blanket Implementations

impl<V> IntoVec<V> for V[src]

impl<V> IntoPnt<V> for V[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T, Right> ClosedMul<Right> for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T, Right> ClosedDiv<Right> for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<R, E> Transformation<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<R, E> Similarity<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField + SubsetOf<R>,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

type Scaling = R

The type of the pure (uniform) scaling part of this similarity transformation.

fn translate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure translational part to a point.

fn rotate_point(&self, pt: &E) -> E[src]

Applies this transformation's pure rotational part to a point.

fn scale_point(&self, pt: &E) -> E[src]

Applies this transformation's pure scaling part to a point.

fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure rotational part to a vector.

fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation's pure scaling part to a vector.

fn inverse_translate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure translational part to a point.

fn inverse_rotate_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure rotational part to a point.

fn inverse_scale_point(&self, pt: &E) -> E[src]

Applies this transformation inverse's pure scaling part to a point.

fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure rotational part to a vector.

fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates
[src]

Applies this transformation inverse's pure scaling part to a vector.

impl<R, E> ProjectiveTransformation<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

impl<R, E> AffineTransformation<E> for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg
[src]

type Rotation = Id<Multiplicative>

Type of the first rotation to be applied.

type NonUniformScaling = R

Type of the non-uniform scaling to be applied.

type Translation = Id<Multiplicative>

The type of the pure translation part of this affine transformation.

fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>[src]

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<T> MultiplicativeGroup for T where
    T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid
[src]

impl<T> MultiplicativeMonoid for T where
    T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One
[src]

impl<T> MultiplicativeMagma for T where
    T: AbstractMagma<Multiplicative>, 
[src]

impl<T> MultiplicativeQuasigroup for T where
    T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma
[src]

impl<T> MultiplicativeLoop for T where
    T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One
[src]

impl<T> MultiplicativeSemigroup for T where
    T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma
[src]