1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
use crate::{
    binlog_error::BinlogError,
    column::{column_type::ColumnType, column_value::ColumnValue},
    ext::buf_ext::BufExt,
};
use byteorder::{LittleEndian, ReadBytesExt};
use std::io::{Cursor, Read, Seek, SeekFrom};

use super::{
    json_formatter::JsonFormatter, json_string_formatter::JsonStringFormatter,
    value_type::ValueType,
};

// refer: https://github.com/osheroff/mysql-binlog-connector-java/blob/master/src/main/java/com/github/shyiko/mysql/binlog/event/deserialization/json/JsonBinary.java
pub struct JsonBinary<'a> {
    reader: Cursor<&'a [u8]>,
}

impl JsonBinary<'_> {
    pub fn parse_as_string(bytes: &[u8]) -> Result<String, BinlogError> {
        /* check for mariaDB-format JSON strings inside columns marked JSON */
        let is_json_string = bytes[0] > 0x0f;
        if is_json_string {
            return Ok(std::str::from_utf8(bytes).unwrap().to_string());
        }

        let mut formatter = JsonStringFormatter::new();
        Self::parse(bytes, &mut formatter)?;
        Ok(formatter.get_string())
    }

    pub fn parse<F: JsonFormatter>(bytes: &[u8], formatter: &mut F) -> Result<(), BinlogError> {
        let mut binary = JsonBinary {
            reader: Cursor::new(bytes),
        };
        let value_type = binary.read_value_type()?;
        binary.parse_internal(&value_type, formatter)
    }

    fn parse_internal<F: JsonFormatter>(
        &mut self,
        type_: &ValueType,
        formatter: &mut F,
    ) -> Result<(), BinlogError> {
        match type_ {
            ValueType::SmallDocument => self.parse_object(true, false, formatter),
            ValueType::LargeDocument => self.parse_object(false, false, formatter),
            ValueType::SmallArray => self.parse_object(true, true, formatter),
            ValueType::LargeArray => self.parse_object(false, true, formatter),
            ValueType::Literal => self.parse_literal(formatter),
            ValueType::Int16 => self.parse_int16(formatter),
            ValueType::Uint16 => self.parse_uint16(formatter),
            ValueType::Int32 => self.parse_int32(formatter),
            ValueType::Uint32 => self.parse_uint32(formatter),
            ValueType::Int64 => self.parse_int64(formatter),
            ValueType::Uint64 => self.parse_uint64(formatter),
            ValueType::Double => self.parse_double(formatter),
            ValueType::String => self.parse_string(formatter),
            ValueType::Custom => self.parse_opaque(formatter),
        }
    }

    fn parse_object<F: JsonFormatter>(
        &mut self,
        is_small: bool,
        is_array: bool,
        formatter: &mut F,
    ) -> Result<(), BinlogError> {
        let object_offset = self.reader.position();

        // Read the header ...
        let num_elements = self.read_unsigned_index(u32::MAX, is_small, "number of elements in")?;
        let num_bytes = self.read_unsigned_index(u32::MAX, is_small, "size of")?;
        let value_size = if is_small { 2 } else { 4 };

        // Read each key-entry, consisting of the offset and length of each key ...
        let mut keys = Vec::with_capacity(num_elements as usize);

        if !is_array {
            for _i in 0..num_elements {
                keys.push(KeyEntry {
                    index: self.read_unsigned_index(num_bytes, is_small, "key offset in")? as u64,
                    length: self.read_uint16()? as usize,
                    name: String::new(),
                });
            }
        }

        // Read each key value value-entry
        let mut entries = Vec::with_capacity(num_elements as usize);
        for _i in 0..num_elements as usize {
            // Parse the value ...
            let type_ = self.read_value_type()?;
            let entry_value = match type_ {
                ValueType::Literal => {
                    let value = self.read_literal()?;
                    self.reader.seek(SeekFrom::Current(value_size - 1))?;
                    Some(DirectEntryValue::Literal(value))
                }
                ValueType::Int16 => {
                    let value = Some(DirectEntryValue::Numeric(self.read_int16()? as i64));
                    self.reader.seek(SeekFrom::Current(value_size - 2))?;
                    value
                }
                ValueType::Uint16 => {
                    let value = Some(DirectEntryValue::Numeric(self.read_uint16()? as i64));
                    self.reader.seek(SeekFrom::Current(value_size - 2))?;
                    value
                }
                ValueType::Int32 => {
                    if !is_small {
                        Some(DirectEntryValue::Numeric(self.read_int32()? as i64))
                    } else {
                        None
                    }
                }
                ValueType::Uint32 => {
                    if !is_small {
                        Some(DirectEntryValue::Numeric(self.read_uint32()? as i64))
                    } else {
                        None
                    }
                }
                _ => None,
            };

            if entry_value.is_some() {
                entries.push(ValueEntry::new(type_).set_value(entry_value));
            } else {
                // It is an offset, not a value ...
                let index = self.read_unsigned_index(num_bytes, is_small, "value offset in")?;
                entries.push(ValueEntry::new_with_index(type_, index));
            }
        }

        if !is_array {
            // Read each key ...
            for key in keys.iter_mut() {
                let skip_bytes = key.index + object_offset - self.reader.position();
                // Skip to a start of a field name if the current position does not point to it
                // This can happen for MySQL 8
                if skip_bytes != 0 {
                    self.reader.seek(SeekFrom::Current(skip_bytes as i64))?;
                }
                key.name = self.read_as_string(key.length)?;
            }
        }

        if is_array {
            formatter.begin_array(num_elements)
        } else {
            formatter.begin_object(num_elements);
        }

        // Read and parse the values ...
        for i in 0..num_elements as usize {
            if i != 0 {
                formatter.next_entry();
            }

            if !is_array {
                formatter.name(&keys[i].name);
            }

            let entry = &entries[i];
            if entry.resolved {
                if let Some(entry_value) = &entry.value {
                    match entry_value {
                        DirectEntryValue::Literal(value) => {
                            if let Some(bool_value) = value {
                                formatter.value_bool(*bool_value);
                            } else {
                                formatter.value_null();
                            }
                        }
                        DirectEntryValue::Numeric(value) => {
                            formatter.value_long(*value);
                        }
                    }
                } else {
                    formatter.value_null();
                }
            } else {
                // Parse the value ...
                self.reader
                    .seek(SeekFrom::Start(object_offset + entry.index as u64))?;
                self.parse_internal(&entry.value_type, formatter)?;
            }
        }

        if is_array {
            formatter.end_array();
        } else {
            formatter.end_object();
        }

        Ok(())
    }

    pub fn parse_literal<F: JsonFormatter>(
        &mut self,
        formatter: &mut F,
    ) -> Result<(), BinlogError> {
        if let Some(value) = self.read_literal()? {
            formatter.value_bool(value);
        } else {
            formatter.value_null();
        }
        Ok(())
    }

    fn parse_int16<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let value = self.read_int16()?;
        formatter.value_int(value as i32);
        Ok(())
    }

    fn parse_uint16<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let value = self.read_uint16()?;
        formatter.value_int(value as i32);
        Ok(())
    }

    fn parse_int32<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let value = self.read_int32()?;
        formatter.value_int(value);
        Ok(())
    }

    fn parse_uint32<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let value = self.read_uint32()?;
        formatter.value_long(value as i64);
        Ok(())
    }

    fn parse_int64<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let value = self.read_int64()?;
        formatter.value_long(value);
        Ok(())
    }

    pub fn parse_uint64<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let value = self.read_uint64()?;
        formatter.value_big_int(value as i128);
        Ok(())
    }

    pub fn parse_double(&mut self, formatter: &mut dyn JsonFormatter) -> Result<(), BinlogError> {
        let raw_value = self.read_int64()? as u64;
        let value = f64::from_bits(raw_value);
        formatter.value_double(value);
        Ok(())
    }

    fn parse_string<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let length = self.read_var_int()?;
        let mut bytes = vec![0; length as usize];
        self.reader.read_exact(&mut bytes)?;
        let value = bytes.to_utf8_string();
        formatter.value_string(&value);
        Ok(())
    }

    fn parse_date<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let raw = self.read_int64()?;
        let value = raw >> 24;
        let year_month = (value >> 22) % (1 << 17);
        let year = year_month / 13;
        let month = year_month % 13;
        let day = (value >> 17) % (1 << 5);
        formatter.value_date(year as i32, month as i32, day as i32);
        Ok(())
    }

    pub fn parse_time<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let raw = self.read_int64()?;
        let value = raw >> 24;
        let negative = value < 0;
        let hour = (value >> 12) % (1 << 10); // 10 bits starting at 12th
        let min = (value >> 6) % (1 << 6); // 6 bits starting at 6th
        let sec = value % (1 << 6); // 6 bits starting at 0th
        let hour = if negative { -hour } else { hour };
        let micro_seconds = (raw % (1 << 24)) as u32;
        formatter.value_time(hour as i32, min as i32, sec as i32, micro_seconds as i32);
        Ok(())
    }

    fn parse_datetime<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        let raw = self.read_int64()?;
        let value = raw >> 24;
        let year_month = ((value >> 22) % (1 << 17)) as i32; // 17 bits starting at 22nd
        let year = year_month / 13;
        let month = year_month % 13;
        let day = ((value >> 17) % (1 << 5)) as i32; // 5 bits starting at 17th
        let hour = ((value >> 12) % (1 << 5)) as i32; // 5 bits starting at 12th
        let min = ((value >> 6) % (1 << 6)) as i32; // 6 bits starting at 6th
        let sec = (value % (1 << 6)) as i32; // 6 bits starting at 0th
        let micro_seconds = (raw % (1 << 24)) as i32;
        formatter.value_datetime(year, month, day, hour, min, sec, micro_seconds);
        Ok(())
    }

    fn parse_decimal<F: JsonFormatter>(
        &mut self,
        length: usize,
        formatter: &mut F,
    ) -> Result<(), BinlogError> {
        // First two bytes are the precision and scale ...
        let precision = self.reader.read_u8()? as usize;
        let scale = self.reader.read_u8()? as usize;

        // Followed by the binary representation
        let mut buf = vec![0; length - 2];
        self.reader.read_exact(&mut buf)?;
        let mut cursor = Cursor::new(&buf);
        let decimal = ColumnValue::parse_decimal(&mut cursor, precision, scale)?;

        formatter.value_decimal(&decimal);
        Ok(())
    }

    fn parse_opaque_value<F: JsonFormatter>(
        &mut self,
        type_: &ColumnType,
        length: usize,
        formatter: &mut F,
    ) -> Result<(), BinlogError> {
        let mut bytes = vec![0; length];
        self.reader.read_exact(&mut bytes)?;
        formatter.value_opaque(type_, &bytes);
        Ok(())
    }

    pub fn parse_opaque<F: JsonFormatter>(&mut self, formatter: &mut F) -> Result<(), BinlogError> {
        // Read the custom type, which should be a standard ColumnType ...
        let custom_type = self.reader.read_u8()?;
        let type_ = ColumnType::from_code(custom_type);
        // Read the data length ...
        let length = self.read_var_int()? as usize;

        match type_ {
            ColumnType::Decimal | ColumnType::NewDecimal => {
                self.parse_decimal(length, formatter)?
            }
            ColumnType::Date => self.parse_date(formatter)?,
            ColumnType::Time | ColumnType::Time2 => self.parse_time(formatter)?,
            ColumnType::DateTime
            | ColumnType::DateTime2
            | ColumnType::TimeStamp
            | ColumnType::TimeStamp2 => self.parse_datetime(formatter)?,
            _ => self.parse_opaque_value(&type_, length, formatter)?,
        }
        Ok(())
    }

    fn read_unsigned_index(
        &mut self,
        max_value: u32,
        is_small: bool,
        desc: &str,
    ) -> Result<u32, BinlogError> {
        let result = if is_small {
            self.read_uint16()? as u32
        } else {
            self.read_uint32()?
        };

        if result > max_value {
            return Err(BinlogError::ParseJsonError(format!(
                "{}, the JSON document is {} and is too big for the binary form of the document ({})",
                desc,
                result,
                max_value
            )));
        }

        Ok(result)
    }

    fn read_int16(&mut self) -> Result<i16, BinlogError> {
        Ok(self.reader.read_i16::<LittleEndian>()?)
    }

    fn read_uint16(&mut self) -> Result<u16, BinlogError> {
        Ok(self.reader.read_u16::<LittleEndian>()?)
    }

    fn read_int32(&mut self) -> Result<i32, BinlogError> {
        Ok(self.reader.read_i32::<LittleEndian>()?)
    }

    fn read_uint32(&mut self) -> Result<u32, BinlogError> {
        Ok(self.reader.read_u32::<LittleEndian>()?)
    }

    fn read_int64(&mut self) -> Result<i64, BinlogError> {
        Ok(self.reader.read_i64::<LittleEndian>()?)
    }

    fn read_uint64(&mut self) -> Result<u64, BinlogError> {
        let mut big_endian: [u8; 8] = [0; 8];
        for i in 0..8 {
            big_endian[i] = self.reader.read_u8()?;
        }
        Ok(u64::from_be_bytes(big_endian))
    }

    fn read_as_string(&mut self, length: usize) -> Result<String, BinlogError> {
        let mut bytes = vec![0; length];
        self.reader.read_exact(&mut bytes)?;
        Ok(bytes.to_utf8_string())
    }

    fn read_var_int(&mut self) -> Result<i32, BinlogError> {
        let mut length: i32 = 0;
        for i in 0..5 {
            let b = self.reader.read_u8()? as i32;
            length |= (b & 0x7F) << (7 * i);
            if (b & 0x80) == 0 {
                return Ok(length);
            }
        }

        Err(BinlogError::ParseJsonError(
            "Unexpected byte sequence".into(),
        ))
    }

    fn read_literal(&mut self) -> Result<Option<bool>, BinlogError> {
        let b = self.reader.read_u8()?;
        match b {
            0x00 => Ok(None),
            0x01 => Ok(Some(true)),
            0x02 => Ok(Some(false)),
            _ => Err(BinlogError::ParseJsonError(format!(
                "Unexpected value: '{}' for literal",
                self.as_hex(b)
            ))),
        }
    }

    fn read_value_type(&mut self) -> Result<ValueType, BinlogError> {
        let b = self.reader.read_u8()?;
        if let Some(result) = ValueType::by_code(b) {
            Ok(result)
        } else {
            Err(BinlogError::ParseJsonError(format!(
                "Unknown value type code: '{}'",
                self.as_hex(b)
            )))
        }
    }

    fn as_hex(&mut self, b: u8) -> String {
        format!("{:02X} ", b)
    }
}

#[derive(Default)]
struct KeyEntry {
    pub index: u64,
    pub length: usize,
    pub name: String,
}

struct ValueEntry {
    pub value_type: ValueType,
    pub index: u32,
    pub value: Option<DirectEntryValue>,
    pub resolved: bool,
}

enum DirectEntryValue {
    Literal(Option<bool>),
    Numeric(i64),
}

impl ValueEntry {
    fn new(value_type: ValueType) -> Self {
        Self {
            value_type,
            index: 0,
            value: None,
            resolved: false,
        }
    }

    fn new_with_index(value_type: ValueType, index: u32) -> Self {
        Self {
            value_type,
            index,
            value: None,
            resolved: false,
        }
    }

    fn set_value(mut self, value: Option<DirectEntryValue>) -> Self {
        self.value = value;
        self.resolved = true;
        self
    }
}