1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//! Containers which can store up to a fixed number of uninitialized bytes on
//! the stack and read into and from it.

use core::fmt;
use core::mem::{self, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::slice;

use musli::{Buf, Context};

use crate::writer::Writer;

/// A fixed-size bytes storage which keeps track of how much has been initialized.
pub struct FixedBytes<const N: usize> {
    /// Data storage.
    data: [MaybeUninit<u8>; N],
    /// How many bytes have been initialized.
    init: usize,
}

impl<const N: usize> FixedBytes<N> {
    /// Construct a new fixed bytes array storage.
    #[inline]
    pub const fn new() -> Self {
        Self {
            // SAFETY: MaybeUnint::uninit_array is not stable.
            data: unsafe { MaybeUninit::<[MaybeUninit<u8>; N]>::uninit().assume_init() },
            init: 0,
        }
    }

    /// Construct a fixed bytes while asserting that the given runtime capacity isn't violated.
    pub fn with_capacity(capacity: usize) -> Self {
        assert!(
            capacity < N,
            "Requested capacity {capacity} is larger than {N}"
        );
        Self::new()
    }

    /// Get the length of the collection.
    #[inline]
    pub const fn len(&self) -> usize {
        self.init
    }

    /// Test if the current container is empty.
    #[inline]
    pub const fn is_empty(&self) -> bool {
        self.init == 0
    }

    /// Clear the [FixedBytes] container.
    #[inline]
    pub fn clear(&mut self) {
        self.init = 0;
    }

    /// Get the remaining capacity of the [FixedBytes].
    #[inline]
    pub const fn remaining(&self) -> usize {
        N.saturating_sub(self.init)
    }

    /// Coerce into the underlying bytes if all of them have been initialized.
    #[inline]
    pub fn into_bytes(self) -> Option<[u8; N]> {
        if self.init == N {
            // SAFETY: All of the bytes in the sequence have been initialized
            // and can be safety transmuted.
            //
            // Method of transmuting comes from the implementation of
            // `MaybeUninit::array_assume_init` which is not yet stable.
            unsafe { Some((&self.data as *const _ as *const [u8; N]).read()) }
        } else {
            None
        }
    }

    /// Coerce into the slice of initialized memory which is present.
    #[inline]
    pub fn as_slice(&self) -> &[u8] {
        if self.init == 0 {
            return &[];
        }

        // SAFETY: We've asserted that `initialized` accounts for the number of
        // bytes that have been initialized.
        unsafe { core::slice::from_raw_parts(self.data.as_ptr().cast(), self.init) }
    }

    /// Coerce into the mutable slice of initialized memory which is present.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [u8] {
        if self.init == 0 {
            return &mut [];
        }

        // SAFETY: We've asserted that `initialized` accounts for the number of
        // bytes that have been initialized.
        unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().cast(), self.init) }
    }

    /// Try and push a single byte.
    #[inline]
    pub fn push(&mut self, value: u8) -> bool {
        if N.saturating_sub(self.init) == 0 {
            return false;
        }

        unsafe {
            self.data
                .as_mut_ptr()
                .cast::<u8>()
                .add(self.init)
                .write(value)
        }

        self.init += 1;
        true
    }

    /// Try and extend from the given slice.
    #[inline]
    pub fn extend_from_slice(&mut self, source: &[u8]) -> bool {
        if source.len() > N.saturating_sub(self.init) {
            return false;
        }

        unsafe {
            let dst = (self.data.as_mut_ptr() as *mut u8).add(self.init);
            ptr::copy_nonoverlapping(source.as_ptr(), dst, source.len());
        }

        self.init = self.init.wrapping_add(source.len());
        true
    }

    /// Try and extend from the given slice.
    #[inline]
    pub fn write_bytes<C>(&mut self, cx: &C, source: &[u8]) -> Result<(), C::Error>
    where
        C: ?Sized + Context,
    {
        if !self.extend_from_slice(source) {
            return Err(cx.message(FixedBytesOverflow {
                at: self.init,
                additional: source.len(),
                capacity: N,
            }));
        }

        Ok(())
    }
}

impl<const N: usize> Deref for FixedBytes<N> {
    type Target = [u8];

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<const N: usize> DerefMut for FixedBytes<N> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<const N: usize> Default for FixedBytes<N> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<const N: usize> Writer for FixedBytes<N> {
    type Mut<'this> = &'this mut Self where Self: 'this;

    #[inline]
    fn borrow_mut(&mut self) -> Self::Mut<'_> {
        self
    }

    #[inline]
    fn write_buffer<C, B>(&mut self, cx: &C, buffer: B) -> Result<(), C::Error>
    where
        C: ?Sized + Context,
        B: Buf,
    {
        // SAFETY: the buffer never outlives this function call.
        self.write_bytes(cx, buffer.as_slice())
    }

    #[inline]
    fn write_bytes<C>(&mut self, cx: &C, bytes: &[u8]) -> Result<(), C::Error>
    where
        C: ?Sized + Context,
    {
        FixedBytes::write_bytes(self, cx, bytes)?;
        cx.advance(bytes.len());
        Ok(())
    }
}

/// Capacity error raised by trying to write to a [FixedBytes] with no remaining
/// capacity.
#[derive(Debug)]
#[allow(missing_docs)]
#[non_exhaustive]
pub(crate) struct FixedBytesOverflow {
    at: usize,
    additional: usize,
    capacity: usize,
}

impl fmt::Display for FixedBytesOverflow {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let FixedBytesOverflow {
            at,
            additional,
            capacity,
        } = self;

        write!(
            f,
            "Tried to write {additional} bytes at {at} with capacity {capacity}"
        )
    }
}

/// An error raised when we are at capacity.
#[non_exhaustive]
pub(crate) struct CapacityError;

/// A fixed capacity vector allocated on the stack.
pub(crate) struct FixedVec<T, const N: usize> {
    data: [MaybeUninit<T>; N],
    len: usize,
}

impl<T, const N: usize> FixedVec<T, N> {
    /// Construct a new empty fixed vector.
    pub(crate) const fn new() -> FixedVec<T, N> {
        unsafe {
            FixedVec {
                data: MaybeUninit::uninit().assume_init(),
                len: 0,
            }
        }
    }

    #[inline]
    pub(crate) fn as_ptr(&self) -> *const T {
        self.data.as_ptr() as *const T
    }

    #[inline]
    pub(crate) fn as_mut_ptr(&mut self) -> *mut T {
        self.data.as_mut_ptr() as *mut T
    }

    #[inline]
    pub(crate) fn as_slice(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
    }

    #[inline]
    pub(crate) fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
    }

    /// Try to push an element onto the fixed vector.
    pub(crate) fn try_push(&mut self, element: T) -> Result<(), CapacityError> {
        if self.len >= N {
            return Err(CapacityError);
        }

        unsafe {
            ptr::write(self.as_mut_ptr().wrapping_add(self.len), element);
            self.len += 1;
        }

        Ok(())
    }

    /// Pop the last element in the fixed vector.
    pub(crate) fn pop(&mut self) -> Option<T> {
        if self.len == 0 {
            return None;
        }

        unsafe {
            let new_len = self.len - 1;
            self.len = new_len;
            Some(ptr::read(self.as_ptr().wrapping_add(new_len)))
        }
    }

    pub(crate) fn clear(&mut self) {
        if self.len == 0 {
            return;
        }

        let len = mem::take(&mut self.len);

        if mem::needs_drop::<T>() {
            unsafe {
                let tail = slice::from_raw_parts_mut(self.as_mut_ptr(), len);
                ptr::drop_in_place(tail);
            }
        }
    }
}

impl<T, const N: usize> Deref for FixedVec<T, N> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<T, const N: usize> DerefMut for FixedVec<T, N> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<T, const N: usize> Drop for FixedVec<T, N> {
    #[inline]
    fn drop(&mut self) {
        self.clear()
    }
}