1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//! Univariate and multivariate probability distributions.

pub use crate::triangular::Triangular;

use num::traits::{Float, FloatConst, NumAssignOps, NumCast};
use rand::{
    distributions::{uniform::SampleUniform, Distribution, OpenClosed01},
    Rng,
};

/// Numbers supported by generic items of this module.
pub trait Num
where
    Self: Float + FloatConst + NumCast + NumAssignOps,
    Self: SampleUniform,
{
    /// Generate number between zero (exclusive) and one (inclusive).
    ///
    /// This method is needed due to Rust issue [#20671]:
    /// it avoids having to add `OpenClosed01: Distribution<T>` bounds.
    ///
    /// [#20671]: https://github.com/rust-lang/rust/issues/20671
    fn sample_open_closed_01<R: Rng + ?Sized>(rng: &mut R) -> Self;
}

impl<T> Num for T
where
    T: Float + FloatConst + NumCast + NumAssignOps,
    T: SampleUniform,
    OpenClosed01: Distribution<T>,
{
    fn sample_open_closed_01<R: Rng + ?Sized>(rng: &mut R) -> Self {
        OpenClosed01.sample(rng)
    }
}

/// Multivariate distribution.
pub trait MultivarDist<T>: Distribution<Vec<T>> {
    /// Dimensionality
    fn dim(&self) -> usize;
}

/// Univariate standard normal distribtion.
#[derive(Clone, Copy, Default, Debug)]
pub struct StdNormDist;

impl<T: Num> Distribution<T> for StdNormDist {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
        let pi: T = T::PI();
        let r = (T::from(-2.0).unwrap() * T::ln(T::sample_open_closed_01(rng))).sqrt();
        let sin = rng.gen_range(-pi..pi).sin();
        r * sin
    }
}

/// Univariate standard normal distribtion with pairwise output.
#[derive(Clone, Copy, Default, Debug)]
pub struct StdNormDistPair;

impl<T: Num> Distribution<[T; 2]> for StdNormDistPair {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [T; 2] {
        let pi: T = T::PI();
        let r = (T::from(-2.0).unwrap() * T::ln(T::sample_open_closed_01(rng))).sqrt();
        let (sin, cos) = rng.gen_range(-pi..pi).sin_cos();
        [r * sin, r * cos]
    }
}

impl<T: Num> Distribution<(T, T)> for StdNormDistPair {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> (T, T) {
        let [x, y]: [T; 2] = self.sample(rng);
        (x, y)
    }
}

/// Univariate standard normal distribtion with variable length output.
#[derive(Clone, Copy, Default, Debug)]
pub struct StdNormDistVec(
    /// Number of elements in [`Vec`] sample.
    pub usize,
);

impl<T: Num> Distribution<Vec<T>> for StdNormDistVec {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<T> {
        let dim = self.0;
        let mut vec = Vec::with_capacity(dim);
        for _ in 0..dim / 2 {
            let (x, y) = StdNormDistPair.sample(rng);
            vec.push(x);
            vec.push(y);
        }
        if dim % 2 == 1 {
            vec.push(StdNormDist.sample(rng));
        }
        vec
    }
}

/// Univariate (non-standard) normal distribtion with given average and
/// standard deviation.
#[derive(Clone, Debug)]
pub struct NormDist<T> {
    /// Average of created samples.
    pub average: T,
    /// Standard deviation of created samples.
    pub stddev: T,
}

impl<T> NormDist<T> {
    /// Create distribution with given average and standard deviation.
    pub const fn new(average: T, stddev: T) -> NormDist<T> {
        NormDist { average, stddev }
    }
}

impl<T: Num> Distribution<T> for NormDist<T> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
        let x: T = StdNormDist.sample(rng);
        x * self.stddev + self.average
    }
}

/// Multivariate normal distribution for given
/// average vectors and covariance matrices.
///
/// # Example
///
/// ```
/// use multivariate_optimization::distributions::MultivarNormDist;
/// use multivariate_optimization::triangular::Triangular;
/// use rand::{thread_rng, Rng};
///
/// let averages: Vec<f64> = vec![1.51, 1.57, -0.29];
/// let covariances = Triangular::<f64>::new(3, |(i, j)| {
///     // needs to handle only cases for i >= j
///     // assert!(i >= j);
///     if i == j { 1.0 } else { 0.5 }
/// });
/// let dist = MultivarNormDist::new(averages, covariances);
///
/// let mut rng = thread_rng();
/// let value = rng.sample(dist);
/// println!("Sample vector: {:?}", value);
/// ```
#[derive(Debug)]
pub struct MultivarNormDist<T> {
    averages: Vec<T>,
    factors: Triangular<T>,
}

impl<T: Num> MultivarNormDist<T> {
    /// Create multivariate normal distribution for given averages and
    /// covariances.
    pub fn new(averages: Vec<T>, covariances: Triangular<T>) -> MultivarNormDist<T> {
        let dim = covariances.dim();
        assert_eq!(
            averages.len(),
            dim,
            "dimensions of averages and covariances do not match"
        );
        let mut factors = covariances;
        for i in 0..dim {
            for j in 0..=i {
                // SAFETY:
                //  *  `i` is smaller than `factors.len()`
                //  *  `j` is equal to or smaller than `i`
                //  *  `k` is equal to or smaller than `j`
                unsafe {
                    let mut sum = *factors.get_unchecked((i, j));
                    for k in 0..j {
                        sum -= *factors.get_unchecked((i, k)) * *factors.get_unchecked((j, k));
                    }
                    let v = if i == j {
                        sum.sqrt()
                    } else {
                        sum / *factors.get_unchecked((j, j))
                    };
                    *factors.get_unchecked_mut((i, j)) = if v.is_finite() { v } else { T::zero() }
                }
            }
        }
        MultivarNormDist { averages, factors }
    }
}

impl<T: Num> MultivarDist<T> for MultivarNormDist<T> {
    fn dim(&self) -> usize {
        self.factors.dim()
    }
}

impl<T: Num> Distribution<Vec<T>> for MultivarNormDist<T> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<T> {
        let dim = self.dim();
        let mut result: Vec<T> = StdNormDistVec(dim).sample(rng);
        // SAFETY:
        //  *  `i` is smaller than `self.dim()` and thus smaller
        //     than `result.len()` and `self.factors.dim()`
        //  *  `j` is equal to or smaller than `i`
        unsafe {
            for i in (0..dim).rev() {
                let mut sum = T::zero();
                for j in 0..=i {
                    sum += *result.get_unchecked(j) * *self.factors.get_unchecked((i, j));
                }
                *result.get_unchecked_mut(i) = sum;
            }
            for i in 0..dim {
                *result.get_unchecked_mut(i) += *self.averages.get_unchecked(i);
            }
        }
        result
    }
}

#[cfg(test)]
mod tests {
    use super::{MultivarNormDist, StdNormDist};
    use crate::triangular::Triangular;
    use rand::{distributions::Distribution, thread_rng};
    const STATCNT: usize = 10000;
    #[test]
    fn test_std_norm_dist() {
        let values: Vec<f64> = StdNormDist
            .sample_iter(thread_rng())
            .take(STATCNT)
            .collect();
        let (mut avg, mut var): (f64, f64) = (0.0, 0.0);
        for value in values.iter() {
            avg += value;
            var += value * value;
        }
        avg /= STATCNT as f64;
        var /= STATCNT as f64;
        assert!(avg.abs() < 0.1);
        assert!((var - 1.0).abs() < 0.1);
    }
    #[test]
    fn test_multivar_norm_dist() {
        let avg_goal: Vec<f64> = vec![0.0, 0.0, 0.0];
        let cov_goal = Triangular::<f64>::new(3, |idx| match idx {
            (0, 0) => 1.0,
            (1, 1) => 0.5,
            (2, 2) => 2.0,
            (2, 0) => 0.25,
            (0, 2) => 0.25,
            _ => 0.0,
        });
        let cov_goal = cov_goal;
        let dist = MultivarNormDist::new(avg_goal.clone(), cov_goal.clone());
        let values: Vec<Vec<f64>> = dist.sample_iter(thread_rng()).take(STATCNT).collect();
        let mut avg: Vec<f64> = vec![0.0; 3];
        for value in values.iter() {
            for i in 0..3 {
                avg[i] += value[i];
            }
        }
        for i in 0..3 {
            avg[i] /= STATCNT as f64;
        }
        let mut cov = Triangular::<f64>::new(3, |(i, j)| {
            let mut sum = 0.0;
            for value in values.iter() {
                sum += (value[i] - avg[i]) * (value[j] - avg[j]);
            }
            sum
        });
        for i in 0..3 {
            for j in 0..=i {
                cov[(i, j)] /= STATCNT as f64;
            }
        }
        for i in 0..3 {
            assert!((avg[i] - avg_goal[i]).abs() < 0.1);
            for j in 0..=i {
                assert!((cov[(i, j)] - cov_goal[(i, j)]).abs() < 0.1);
            }
        }
    }
}