1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use std_shims::vec::Vec;

use rand_core::{RngCore, CryptoRng};

use zeroize::{Zeroize, Zeroizing};

use ff::{Field, PrimeFieldBits};
use group::Group;

use crate::{multiexp, multiexp_vartime};

// Flatten the contained statements to a single Vec.
// Wrapped in Zeroizing in case any of the included statements contain private values.
#[allow(clippy::type_complexity)]
fn flat<Id: Copy + Zeroize, G: Group + Zeroize>(
  slice: &[(Id, Vec<(G::Scalar, G)>)],
) -> Zeroizing<Vec<(G::Scalar, G)>>
where
  <G as Group>::Scalar: PrimeFieldBits + Zeroize,
{
  Zeroizing::new(slice.iter().flat_map(|pairs| pairs.1.iter()).copied().collect::<Vec<_>>())
}

/// A batch verifier intended to verify a series of statements are each equivalent to zero.
#[allow(clippy::type_complexity)]
#[derive(Clone, Zeroize)]
pub struct BatchVerifier<Id: Copy + Zeroize, G: Group + Zeroize>(
  Zeroizing<Vec<(Id, Vec<(G::Scalar, G)>)>>,
)
where
  <G as Group>::Scalar: PrimeFieldBits + Zeroize;

impl<Id: Copy + Zeroize, G: Group + Zeroize> BatchVerifier<Id, G>
where
  <G as Group>::Scalar: PrimeFieldBits + Zeroize,
{
  /// Create a new batch verifier, expected to verify the following amount of statements.
  ///
  /// `capacity` is a size hint and is not required to be accurate.
  pub fn new(capacity: usize) -> BatchVerifier<Id, G> {
    BatchVerifier(Zeroizing::new(Vec::with_capacity(capacity)))
  }

  /// Queue a statement for batch verification.
  pub fn queue<R: RngCore + CryptoRng, I: IntoIterator<Item = (G::Scalar, G)>>(
    &mut self,
    rng: &mut R,
    id: Id,
    pairs: I,
  ) {
    // Define a unique scalar factor for this set of variables so individual items can't overlap
    let u = if self.0.is_empty() {
      G::Scalar::ONE
    } else {
      let mut weight;
      while {
        // Generate a random scalar
        weight = G::Scalar::random(&mut *rng);

        // Clears half the bits, maintaining security, to minimize scalar additions
        // Is not practically faster for whatever reason
        /*
        // Generate a random scalar
        let mut repr = G::Scalar::random(&mut *rng).to_repr();

        // Calculate the amount of bytes to clear. We want to clear less than half
        let repr_len = repr.as_ref().len();
        let unused_bits = (repr_len * 8) - usize::try_from(G::Scalar::CAPACITY).unwrap();
        // Don't clear any partial bytes
        let to_clear = (repr_len / 2) - ((unused_bits + 7) / 8);

        // Clear a safe amount of bytes
        for b in &mut repr.as_mut()[.. to_clear] {
          *b = 0;
        }

        // Ensure these bits are used as the low bits so low scalars multiplied by this don't
        // become large scalars
        weight = G::Scalar::from_repr(repr).unwrap();
        // Tests if any bit we supposedly just cleared is set, and if so, reverses it
        // Not a security issue if this fails, just a minor performance hit at ~2^-120 odds
        if weight.to_le_bits().iter().take(to_clear * 8).any(|bit| *bit) {
          repr.as_mut().reverse();
          weight = G::Scalar::from_repr(repr).unwrap();
        }
        */

        // Ensure it's non-zero, as a zero scalar would cause this item to pass no matter what
        weight.is_zero().into()
      } {}
      weight
    };

    self.0.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
  }

  /// Perform batch verification, returning a boolean of if the statements equaled zero.
  #[must_use]
  pub fn verify(&self) -> bool {
    multiexp(&flat(&self.0)).is_identity().into()
  }

  /// Perform batch verification in variable time.
  #[must_use]
  pub fn verify_vartime(&self) -> bool {
    multiexp_vartime(&flat(&self.0)).is_identity().into()
  }

  /// Perform a binary search to identify which statement does not equal 0, returning None if all
  /// statements do.
  ///
  /// This function will only return the ID of one invalid statement, even if multiple are invalid.
  // A constant time variant may be beneficial for robust protocols
  pub fn blame_vartime(&self) -> Option<Id> {
    let mut slice = self.0.as_slice();
    while slice.len() > 1 {
      let split = slice.len() / 2;
      if multiexp_vartime(&flat(&slice[.. split])).is_identity().into() {
        slice = &slice[split ..];
      } else {
        slice = &slice[.. split];
      }
    }

    slice
      .get(0)
      .filter(|(_, value)| !bool::from(multiexp_vartime(value).is_identity()))
      .map(|(id, _)| *id)
  }

  /// Perform constant time batch verification, and if verification fails, identify one faulty
  /// statement in variable time.
  pub fn verify_with_vartime_blame(&self) -> Result<(), Id> {
    if self.verify() {
      Ok(())
    } else {
      Err(self.blame_vartime().unwrap())
    }
  }

  /// Perform variable time batch verification, and if verification fails, identify one faulty
  /// statement in variable time.
  pub fn verify_vartime_with_vartime_blame(&self) -> Result<(), Id> {
    if self.verify_vartime() {
      Ok(())
    } else {
      Err(self.blame_vartime().unwrap())
    }
  }
}