1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
//! Exports item [`HeaderBuilder`].

use crate::builder::information_request::InformationRequestHeaderTagBuilder;
use crate::builder::traits::StructAsBytes;
use crate::HeaderTagISA;
use crate::{
    AddressHeaderTag, ConsoleHeaderTag, EfiBootServiceHeaderTag, EndHeaderTag,
    EntryAddressHeaderTag, EntryEfi32HeaderTag, EntryEfi64HeaderTag, FramebufferHeaderTag,
    ModuleAlignHeaderTag, Multiboot2BasicHeader, RelocatableHeaderTag,
};
use alloc::vec::Vec;
use core::mem::size_of;
use core::ops::Deref;

/// Holds the raw bytes of a boot information built with [`HeaderBuilder`]
/// on the heap. The bytes returned by [`HeaderBytes::as_bytes`] are
/// guaranteed to be properly aligned.
#[derive(Clone, Debug)]
pub struct HeaderBytes {
    // Offset into the bytes where the header starts. This is necessary to
    // guarantee alignment at the moment.
    offset: usize,
    structure_len: usize,
    bytes: Vec<u8>,
}

impl HeaderBytes {
    /// Returns the bytes. They are guaranteed to be correctly aligned.
    pub fn as_bytes(&self) -> &[u8] {
        let slice = &self.bytes[self.offset..self.offset + self.structure_len];
        // At this point, the alignment is guaranteed. If not, something is
        // broken fundamentally.
        assert_eq!(slice.as_ptr().align_offset(8), 0);
        slice
    }
}

impl Deref for HeaderBytes {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        self.as_bytes()
    }
}

/// Builder to construct a valid Multiboot2 header dynamically at runtime.
/// The tags will appear in the order of their corresponding enumeration,
/// except for the END tag.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct HeaderBuilder {
    arch: HeaderTagISA,
    // first
    information_request_tag: Option<InformationRequestHeaderTagBuilder>,
    // second
    address_tag: Option<AddressHeaderTag>,
    // third
    entry_tag: Option<EntryAddressHeaderTag>,
    // fourth
    console_tag: Option<ConsoleHeaderTag>,
    // fifth
    framebuffer_tag: Option<FramebufferHeaderTag>,
    // sixth
    module_align_tag: Option<ModuleAlignHeaderTag>,
    // seventh
    efi_bs_tag: Option<EfiBootServiceHeaderTag>,
    // eighth
    efi_32_tag: Option<EntryEfi32HeaderTag>,
    // ninth
    efi_64_tag: Option<EntryEfi64HeaderTag>,
    // tenth (last)
    relocatable_tag: Option<RelocatableHeaderTag>,
}

impl HeaderBuilder {
    pub const fn new(arch: HeaderTagISA) -> Self {
        Self {
            arch,
            information_request_tag: None,
            address_tag: None,
            entry_tag: None,
            console_tag: None,
            framebuffer_tag: None,
            module_align_tag: None,
            efi_bs_tag: None,
            efi_32_tag: None,
            efi_64_tag: None,
            relocatable_tag: None,
        }
    }

    /// Returns the size, if the value is a multiple of 8 or returns
    /// the next number that is a multiple of 8. With this, one can
    /// easily calculate the size of a Multiboot2 header, where
    /// all the tags are 8-byte aligned.
    const fn size_or_up_aligned(size: usize) -> usize {
        (size + 7) & !7
    }

    /// Returns the expected length of the Multiboot2 header, when the
    /// [`Self::build`]-method gets called.
    pub fn expected_len(&self) -> usize {
        let base_len = size_of::<Multiboot2BasicHeader>();
        // size_or_up_aligned not required, because basic header length is 16 and the
        // begin is 8 byte aligned => first tag automatically 8 byte aligned
        let mut len = Self::size_or_up_aligned(base_len);
        if let Some(tag_builder) = self.information_request_tag.as_ref() {
            // we use size_or_up_aligned, because each tag will start at an 8 byte aligned address.
            // Attention: expected len from builder, not the size of the builder itself!
            len += Self::size_or_up_aligned(tag_builder.expected_len())
        }
        if self.address_tag.is_some() {
            // we use size_or_up_aligned, because each tag will start at an 8 byte aligned address
            len += Self::size_or_up_aligned(size_of::<AddressHeaderTag>())
        }
        if self.entry_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<EntryAddressHeaderTag>())
        }
        if self.console_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<ConsoleHeaderTag>())
        }
        if self.framebuffer_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<FramebufferHeaderTag>())
        }
        if self.module_align_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<ModuleAlignHeaderTag>())
        }
        if self.efi_bs_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<EfiBootServiceHeaderTag>())
        }
        if self.efi_32_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<EntryEfi32HeaderTag>())
        }
        if self.efi_64_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<EntryEfi64HeaderTag>())
        }
        if self.relocatable_tag.is_some() {
            len += Self::size_or_up_aligned(size_of::<RelocatableHeaderTag>())
        }
        // only here size_or_up_aligned is not important, because it is the last tag
        len += size_of::<EndHeaderTag>();
        len
    }

    /// Adds the bytes of a tag to the final Multiboot2 header byte vector.
    fn build_add_bytes(dest: &mut Vec<u8>, source: &[u8], is_end_tag: bool) {
        let vec_next_write_ptr = unsafe { dest.as_ptr().add(dest.len()) };
        // At this point, the alignment is guaranteed. If not, something is
        // broken fundamentally.
        assert_eq!(vec_next_write_ptr.align_offset(8), 0);

        dest.extend(source);
        if !is_end_tag {
            let size = source.len();
            let size_to_8_align = Self::size_or_up_aligned(size);
            let size_to_8_align_diff = size_to_8_align - size;
            // fill zeroes so that next data block is 8-byte aligned
            dest.extend([0].repeat(size_to_8_align_diff));
        }
    }

    /// Constructs the bytes for a valid Multiboot2 header with the given properties.
    pub fn build(mut self) -> HeaderBytes {
        const ALIGN: usize = 8;

        // PHASE 1/2: Prepare Vector

        // We allocate more than necessary so that we can ensure an correct
        // alignment within this data.
        let expected_len = self.expected_len();
        let alloc_len = expected_len + 7;
        let mut bytes = Vec::<u8>::with_capacity(alloc_len);
        // Pointer to check that no relocation happened.
        let alloc_ptr = bytes.as_ptr();

        // As long as there is no nice way in stable Rust to guarantee the
        // alignment of a vector, I add zero bytes at the beginning and the
        // header might not start at the start of the allocation.
        //
        // Unfortunately, it is not possible to reliably test this in a unit
        // test as long as the allocator_api feature is not stable.
        // Due to my manual testing, however, it works.
        let offset = bytes.as_ptr().align_offset(ALIGN);
        bytes.extend([0].repeat(offset));

        // -----------------------------------------------
        // PHASE 2/2: Add Tags
        self.build_add_tags(&mut bytes);

        assert_eq!(
            alloc_ptr,
            bytes.as_ptr(),
            "Vector was reallocated. Alignment of header probably broken!"
        );
        assert_eq!(
            bytes[0..offset].iter().sum::<u8>(),
            0,
            "The offset to alignment area should be zero."
        );

        HeaderBytes {
            offset,
            bytes,
            structure_len: expected_len,
        }
    }

    /// Helper method that adds all the tags to the given vector.
    fn build_add_tags(&mut self, bytes: &mut Vec<u8>) {
        Self::build_add_bytes(
            bytes,
            // important that we write the correct expected length into the header!
            &Multiboot2BasicHeader::new(self.arch, self.expected_len() as u32).struct_as_bytes(),
            false,
        );

        if let Some(irs) = self.information_request_tag.clone() {
            Self::build_add_bytes(bytes, &irs.build(), false)
        }
        if let Some(tag) = self.address_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.entry_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.console_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.framebuffer_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.module_align_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.efi_bs_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.efi_32_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.efi_64_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        if let Some(tag) = self.relocatable_tag.as_ref() {
            Self::build_add_bytes(bytes, &tag.struct_as_bytes(), false)
        }
        Self::build_add_bytes(bytes, &EndHeaderTag::new().struct_as_bytes(), true);
    }

    // clippy thinks this can be a const fn but the compiler denies it
    #[allow(clippy::missing_const_for_fn)]
    pub fn information_request_tag(
        mut self,
        information_request_tag: InformationRequestHeaderTagBuilder,
    ) -> Self {
        self.information_request_tag = Some(information_request_tag);
        self
    }
    pub const fn address_tag(mut self, address_tag: AddressHeaderTag) -> Self {
        self.address_tag = Some(address_tag);
        self
    }
    pub const fn entry_tag(mut self, entry_tag: EntryAddressHeaderTag) -> Self {
        self.entry_tag = Some(entry_tag);
        self
    }
    pub const fn console_tag(mut self, console_tag: ConsoleHeaderTag) -> Self {
        self.console_tag = Some(console_tag);
        self
    }
    pub const fn framebuffer_tag(mut self, framebuffer_tag: FramebufferHeaderTag) -> Self {
        self.framebuffer_tag = Some(framebuffer_tag);
        self
    }
    pub const fn module_align_tag(mut self, module_align_tag: ModuleAlignHeaderTag) -> Self {
        self.module_align_tag = Some(module_align_tag);
        self
    }
    pub const fn efi_bs_tag(mut self, efi_bs_tag: EfiBootServiceHeaderTag) -> Self {
        self.efi_bs_tag = Some(efi_bs_tag);
        self
    }
    pub const fn efi_32_tag(mut self, efi_32_tag: EntryEfi32HeaderTag) -> Self {
        self.efi_32_tag = Some(efi_32_tag);
        self
    }
    pub const fn efi_64_tag(mut self, efi_64_tag: EntryEfi64HeaderTag) -> Self {
        self.efi_64_tag = Some(efi_64_tag);
        self
    }
    pub const fn relocatable_tag(mut self, relocatable_tag: RelocatableHeaderTag) -> Self {
        self.relocatable_tag = Some(relocatable_tag);
        self
    }
}

#[cfg(test)]
mod tests {
    use crate::builder::header::HeaderBuilder;
    use crate::builder::information_request::InformationRequestHeaderTagBuilder;
    use crate::{
        HeaderTagFlag, HeaderTagISA, MbiTagType, Multiboot2Header, RelocatableHeaderTag,
        RelocatableHeaderTagPreference,
    };

    fn create_builder() -> HeaderBuilder {
        let builder = HeaderBuilder::new(HeaderTagISA::I386);
        // Multiboot2 basic header + end tag
        let mut expected_len = 16 + 8;
        assert_eq!(builder.expected_len(), expected_len);

        // add information request tag
        let ifr_builder =
            InformationRequestHeaderTagBuilder::new(HeaderTagFlag::Required).add_irs(&[
                MbiTagType::EfiMmap,
                MbiTagType::Cmdline,
                MbiTagType::ElfSections,
            ]);
        let ifr_tag_size_with_padding = ifr_builder.expected_len() + 4;
        assert_eq!(
            ifr_tag_size_with_padding % 8,
            0,
            "the length of the IFR tag with padding must be a multiple of 8"
        );
        expected_len += ifr_tag_size_with_padding;
        let builder = builder.information_request_tag(ifr_builder);
        assert_eq!(builder.expected_len(), expected_len);

        let builder = builder.relocatable_tag(RelocatableHeaderTag::new(
            HeaderTagFlag::Required,
            0x1337,
            0xdeadbeef,
            4096,
            RelocatableHeaderTagPreference::None,
        ));
        expected_len += 0x18;
        assert_eq!(builder.expected_len(), expected_len);

        builder
    }

    #[test]
    fn test_size_or_up_aligned() {
        assert_eq!(0, HeaderBuilder::size_or_up_aligned(0));
        assert_eq!(8, HeaderBuilder::size_or_up_aligned(1));
        assert_eq!(8, HeaderBuilder::size_or_up_aligned(8));
        assert_eq!(16, HeaderBuilder::size_or_up_aligned(9));
    }

    /// Test of the `build` method in isolation specifically for miri to check
    /// for memory issues.
    #[test]
    fn test_builder_miri() {
        let builder = create_builder();
        let expected_len = builder.expected_len();
        assert_eq!(builder.build().as_bytes().len(), expected_len);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_builder() {
        // Step 1/2: Build Header
        let mb2_hdr_data = create_builder().build();

        // Step 2/2: Test the built Header
        let mb2_hdr = mb2_hdr_data.as_ptr().cast();
        let mb2_hdr = unsafe { Multiboot2Header::load(mb2_hdr) }
            .expect("the generated header to be loadable");
        println!("{:#?}", mb2_hdr);
        assert_eq!(
            mb2_hdr.relocatable_tag().unwrap().flags(),
            HeaderTagFlag::Required
        );
        assert_eq!(mb2_hdr.relocatable_tag().unwrap().min_addr(), 0x1337);
        assert_eq!(mb2_hdr.relocatable_tag().unwrap().max_addr(), 0xdeadbeef);
        assert_eq!(mb2_hdr.relocatable_tag().unwrap().align(), 4096);
        assert_eq!(
            mb2_hdr.relocatable_tag().unwrap().preference(),
            RelocatableHeaderTagPreference::None
        );

        // Printing the header transitively ensures that a lot of stuff works.
        println!("{:#?}", mb2_hdr);

        /* you can write the binary to a file and a tool such as crate "bootinfo"
           will be able to fully parse the MB2 header
        let mut file = std::file::File::create("mb2_hdr.bin").unwrap();
        use std::io::Write;
        file.write_all(mb2_hdr_data.as_slice()).unwrap();*/
    }
}