multi_tier_cache/cache_manager.rs
1//! Cache Manager - Unified Cache Operations
2//!
3//! Manages operations across L1 (Moka) and L2 (Redis) caches with intelligent fallback.
4
5use std::sync::Arc;
6use std::time::Duration;
7use std::future::Future;
8use anyhow::Result;
9use serde_json;
10use std::sync::atomic::{AtomicU64, AtomicUsize, Ordering};
11use dashmap::DashMap;
12use tokio::sync::Mutex;
13
14use super::l1_cache::L1Cache;
15use super::l2_cache::L2Cache;
16use super::traits::{CacheBackend, L2CacheBackend, StreamingBackend};
17use super::invalidation::{
18 InvalidationConfig, InvalidationPublisher, InvalidationSubscriber,
19 InvalidationMessage, AtomicInvalidationStats, InvalidationStats,
20};
21
22/// RAII cleanup guard for in-flight request tracking
23/// Ensures that entries are removed from DashMap even on early return or panic
24struct CleanupGuard<'a> {
25 map: &'a DashMap<String, Arc<Mutex<()>>>,
26 key: String,
27}
28
29impl<'a> Drop for CleanupGuard<'a> {
30 fn drop(&mut self) {
31 self.map.remove(&self.key);
32 }
33}
34
35/// Cache strategies for different data types
36#[derive(Debug, Clone)]
37#[allow(dead_code)]
38pub enum CacheStrategy {
39 /// Real-time data - 10 seconds TTL
40 RealTime,
41 /// Short-term data - 5 minutes TTL
42 ShortTerm,
43 /// Medium-term data - 1 hour TTL
44 MediumTerm,
45 /// Long-term data - 3 hours TTL
46 LongTerm,
47 /// Custom TTL
48 Custom(Duration),
49 /// Default strategy (5 minutes)
50 Default,
51}
52
53impl CacheStrategy {
54 /// Convert strategy to duration
55 pub fn to_duration(&self) -> Duration {
56 match self {
57 Self::RealTime => Duration::from_secs(10),
58 Self::ShortTerm => Duration::from_secs(300), // 5 minutes
59 Self::MediumTerm => Duration::from_secs(3600), // 1 hour
60 Self::LongTerm => Duration::from_secs(10800), // 3 hours
61 Self::Custom(duration) => *duration,
62 Self::Default => Duration::from_secs(300),
63 }
64 }
65}
66
67/// Statistics for a single cache tier
68#[derive(Debug, Clone)]
69pub struct TierStats {
70 /// Tier level (1 = L1, 2 = L2, 3 = L3, etc.)
71 pub tier_level: usize,
72 /// Number of cache hits at this tier
73 pub hits: Arc<AtomicU64>,
74 /// Backend name for identification
75 pub backend_name: String,
76}
77
78impl TierStats {
79 fn new(tier_level: usize, backend_name: String) -> Self {
80 Self {
81 tier_level,
82 hits: Arc::new(AtomicU64::new(0)),
83 backend_name,
84 }
85 }
86
87 /// Get current hit count
88 pub fn hit_count(&self) -> u64 {
89 self.hits.load(Ordering::Relaxed)
90 }
91}
92
93/// A single cache tier in the multi-tier architecture
94pub struct CacheTier {
95 /// Cache backend for this tier
96 backend: Arc<dyn L2CacheBackend>,
97 /// Tier level (1 = hottest/fastest, higher = colder/slower)
98 tier_level: usize,
99 /// Enable automatic promotion to upper tiers on cache hit
100 promotion_enabled: bool,
101 /// TTL scale factor (multiplier for TTL when storing/promoting)
102 ttl_scale: f64,
103 /// Statistics for this tier
104 stats: TierStats,
105}
106
107impl CacheTier {
108 /// Create a new cache tier
109 pub fn new(
110 backend: Arc<dyn L2CacheBackend>,
111 tier_level: usize,
112 promotion_enabled: bool,
113 ttl_scale: f64,
114 ) -> Self {
115 let backend_name = backend.name().to_string();
116 Self {
117 backend,
118 tier_level,
119 promotion_enabled,
120 ttl_scale,
121 stats: TierStats::new(tier_level, backend_name),
122 }
123 }
124
125 /// Get value with TTL from this tier
126 async fn get_with_ttl(&self, key: &str) -> Option<(serde_json::Value, Option<Duration>)> {
127 self.backend.get_with_ttl(key).await
128 }
129
130 /// Set value with TTL in this tier
131 async fn set_with_ttl(&self, key: &str, value: serde_json::Value, ttl: Duration) -> Result<()> {
132 let scaled_ttl = Duration::from_secs_f64(ttl.as_secs_f64() * self.ttl_scale);
133 self.backend.set_with_ttl(key, value, scaled_ttl).await
134 }
135
136 /// Remove value from this tier
137 async fn remove(&self, key: &str) -> Result<()> {
138 self.backend.remove(key).await
139 }
140
141 /// Record a cache hit for this tier
142 fn record_hit(&self) {
143 self.stats.hits.fetch_add(1, Ordering::Relaxed);
144 }
145}
146
147/// Configuration for a cache tier (used in builder pattern)
148#[derive(Debug, Clone)]
149pub struct TierConfig {
150 /// Tier level (1, 2, 3, 4...)
151 pub tier_level: usize,
152 /// Enable promotion to upper tiers on hit
153 pub promotion_enabled: bool,
154 /// TTL scale factor (1.0 = same as base TTL)
155 pub ttl_scale: f64,
156}
157
158impl TierConfig {
159 /// Create new tier configuration
160 pub fn new(tier_level: usize) -> Self {
161 Self {
162 tier_level,
163 promotion_enabled: true,
164 ttl_scale: 1.0,
165 }
166 }
167
168 /// Configure as L1 (hot tier)
169 pub fn as_l1() -> Self {
170 Self {
171 tier_level: 1,
172 promotion_enabled: false, // L1 is already top tier
173 ttl_scale: 1.0,
174 }
175 }
176
177 /// Configure as L2 (warm tier)
178 pub fn as_l2() -> Self {
179 Self {
180 tier_level: 2,
181 promotion_enabled: true,
182 ttl_scale: 1.0,
183 }
184 }
185
186 /// Configure as L3 (cold tier) with longer TTL
187 pub fn as_l3() -> Self {
188 Self {
189 tier_level: 3,
190 promotion_enabled: true,
191 ttl_scale: 2.0, // Keep data 2x longer
192 }
193 }
194
195 /// Configure as L4 (archive tier) with much longer TTL
196 pub fn as_l4() -> Self {
197 Self {
198 tier_level: 4,
199 promotion_enabled: true,
200 ttl_scale: 8.0, // Keep data 8x longer
201 }
202 }
203
204 /// Set promotion enabled
205 pub fn with_promotion(mut self, enabled: bool) -> Self {
206 self.promotion_enabled = enabled;
207 self
208 }
209
210 /// Set TTL scale factor
211 pub fn with_ttl_scale(mut self, scale: f64) -> Self {
212 self.ttl_scale = scale;
213 self
214 }
215
216 /// Set tier level
217 pub fn with_level(mut self, level: usize) -> Self {
218 self.tier_level = level;
219 self
220 }
221}
222
223/// Proxy wrapper to convert L2CacheBackend to CacheBackend
224/// (Rust doesn't support automatic trait upcasting for trait objects)
225struct ProxyCacheBackend {
226 backend: Arc<dyn L2CacheBackend>,
227}
228
229#[async_trait::async_trait]
230impl CacheBackend for ProxyCacheBackend {
231 async fn get(&self, key: &str) -> Option<serde_json::Value> {
232 self.backend.get(key).await
233 }
234
235 async fn set_with_ttl(&self, key: &str, value: serde_json::Value, ttl: Duration) -> Result<()> {
236 self.backend.set_with_ttl(key, value, ttl).await
237 }
238
239 async fn remove(&self, key: &str) -> Result<()> {
240 self.backend.remove(key).await
241 }
242
243 async fn health_check(&self) -> bool {
244 self.backend.health_check().await
245 }
246
247 fn name(&self) -> &str {
248 self.backend.name()
249 }
250}
251
252/// Cache Manager - Unified operations across multiple cache tiers
253///
254/// Supports both legacy 2-tier (L1+L2) and new multi-tier (L1+L2+L3+L4+...) architectures.
255/// When `tiers` is Some, it uses the dynamic multi-tier system. Otherwise, falls back to
256/// legacy L1+L2 behavior for backward compatibility.
257pub struct CacheManager {
258 /// Dynamic multi-tier cache architecture (v0.5.0+)
259 /// If Some, this takes precedence over l1_cache/l2_cache fields
260 tiers: Option<Vec<CacheTier>>,
261
262 // ===== Legacy fields (v0.1.0 - v0.4.x) =====
263 // Maintained for backward compatibility
264 /// L1 Cache (trait object for pluggable backends)
265 l1_cache: Arc<dyn CacheBackend>,
266 /// L2 Cache (trait object for pluggable backends)
267 l2_cache: Arc<dyn L2CacheBackend>,
268 /// L2 Cache concrete instance (for invalidation scan_keys)
269 l2_cache_concrete: Option<Arc<L2Cache>>,
270
271 /// Optional streaming backend (defaults to L2 if it implements StreamingBackend)
272 streaming_backend: Option<Arc<dyn StreamingBackend>>,
273 /// Statistics
274 total_requests: Arc<AtomicU64>,
275 l1_hits: Arc<AtomicU64>,
276 l2_hits: Arc<AtomicU64>,
277 misses: Arc<AtomicU64>,
278 promotions: Arc<AtomicUsize>,
279 /// In-flight requests to prevent Cache Stampede on L2/compute operations
280 in_flight_requests: Arc<DashMap<String, Arc<Mutex<()>>>>,
281 /// Invalidation publisher (for broadcasting invalidation messages)
282 invalidation_publisher: Option<Arc<Mutex<InvalidationPublisher>>>,
283 /// Invalidation subscriber (for receiving invalidation messages)
284 invalidation_subscriber: Option<Arc<InvalidationSubscriber>>,
285 /// Invalidation statistics
286 invalidation_stats: Arc<AtomicInvalidationStats>,
287}
288
289impl CacheManager {
290 /// Create new cache manager with trait objects (pluggable backends)
291 ///
292 /// This is the primary constructor for v0.3.0+, supporting custom cache backends.
293 ///
294 /// # Arguments
295 ///
296 /// * `l1_cache` - Any L1 cache backend implementing `CacheBackend` trait
297 /// * `l2_cache` - Any L2 cache backend implementing `L2CacheBackend` trait
298 /// * `streaming_backend` - Optional streaming backend (None to disable streaming)
299 ///
300 /// # Example
301 ///
302 /// ```rust,ignore
303 /// use multi_tier_cache::{CacheManager, L1Cache, L2Cache};
304 /// use std::sync::Arc;
305 ///
306 /// let l1: Arc<dyn CacheBackend> = Arc::new(L1Cache::new().await?);
307 /// let l2: Arc<dyn L2CacheBackend> = Arc::new(L2Cache::new().await?);
308 ///
309 /// let manager = CacheManager::new_with_backends(l1, l2, None).await?;
310 /// ```
311 pub async fn new_with_backends(
312 l1_cache: Arc<dyn CacheBackend>,
313 l2_cache: Arc<dyn L2CacheBackend>,
314 streaming_backend: Option<Arc<dyn StreamingBackend>>,
315 ) -> Result<Self> {
316 println!(" 🎯 Initializing Cache Manager with custom backends...");
317 println!(" L1: {}", l1_cache.name());
318 println!(" L2: {}", l2_cache.name());
319 if streaming_backend.is_some() {
320 println!(" Streaming: enabled");
321 } else {
322 println!(" Streaming: disabled");
323 }
324
325 Ok(Self {
326 tiers: None, // Legacy mode: use l1_cache/l2_cache fields
327 l1_cache,
328 l2_cache,
329 l2_cache_concrete: None,
330 streaming_backend,
331 total_requests: Arc::new(AtomicU64::new(0)),
332 l1_hits: Arc::new(AtomicU64::new(0)),
333 l2_hits: Arc::new(AtomicU64::new(0)),
334 misses: Arc::new(AtomicU64::new(0)),
335 promotions: Arc::new(AtomicUsize::new(0)),
336 in_flight_requests: Arc::new(DashMap::new()),
337 invalidation_publisher: None,
338 invalidation_subscriber: None,
339 invalidation_stats: Arc::new(AtomicInvalidationStats::default()),
340 })
341 }
342
343 /// Create new cache manager with default backends (backward compatible)
344 ///
345 /// This is the legacy constructor maintained for backward compatibility.
346 /// New code should prefer `new_with_backends()` or `CacheSystemBuilder`.
347 ///
348 /// # Arguments
349 ///
350 /// * `l1_cache` - Moka L1 cache instance
351 /// * `l2_cache` - Redis L2 cache instance
352 pub async fn new(l1_cache: Arc<L1Cache>, l2_cache: Arc<L2Cache>) -> Result<Self> {
353 println!(" 🎯 Initializing Cache Manager...");
354
355 // Convert concrete types to trait objects
356 let l1_backend: Arc<dyn CacheBackend> = l1_cache.clone();
357 let l2_backend: Arc<dyn L2CacheBackend> = l2_cache.clone();
358 // L2Cache also implements StreamingBackend, so use it for streaming
359 let streaming_backend: Arc<dyn StreamingBackend> = l2_cache;
360
361 Self::new_with_backends(l1_backend, l2_backend, Some(streaming_backend)).await
362 }
363
364 /// Create new cache manager with invalidation support
365 ///
366 /// This constructor enables cross-instance cache invalidation via Redis Pub/Sub.
367 ///
368 /// # Arguments
369 ///
370 /// * `l1_cache` - Moka L1 cache instance
371 /// * `l2_cache` - Redis L2 cache instance
372 /// * `redis_url` - Redis connection URL for Pub/Sub
373 /// * `config` - Invalidation configuration
374 ///
375 /// # Example
376 ///
377 /// ```rust,ignore
378 /// use multi_tier_cache::{CacheManager, L1Cache, L2Cache, InvalidationConfig};
379 ///
380 /// let config = InvalidationConfig {
381 /// channel: "my_app:cache:invalidate".to_string(),
382 /// ..Default::default()
383 /// };
384 ///
385 /// let manager = CacheManager::new_with_invalidation(
386 /// l1, l2, "redis://localhost", config
387 /// ).await?;
388 /// ```
389 pub async fn new_with_invalidation(
390 l1_cache: Arc<L1Cache>,
391 l2_cache: Arc<L2Cache>,
392 redis_url: &str,
393 config: InvalidationConfig,
394 ) -> Result<Self> {
395 println!(" 🎯 Initializing Cache Manager with Invalidation...");
396 println!(" Pub/Sub channel: {}", config.channel);
397
398 // Convert concrete types to trait objects
399 let l1_backend: Arc<dyn CacheBackend> = l1_cache.clone();
400 let l2_backend: Arc<dyn L2CacheBackend> = l2_cache.clone();
401 let streaming_backend: Arc<dyn StreamingBackend> = l2_cache.clone();
402
403 // Create publisher
404 let client = redis::Client::open(redis_url)?;
405 let conn_manager = redis::aio::ConnectionManager::new(client).await?;
406 let publisher = InvalidationPublisher::new(conn_manager, config.clone());
407
408 // Create subscriber
409 let subscriber = InvalidationSubscriber::new(redis_url, config.clone())?;
410 let invalidation_stats = Arc::new(AtomicInvalidationStats::default());
411
412 let manager = Self {
413 tiers: None, // Legacy mode: use l1_cache/l2_cache fields
414 l1_cache: l1_backend,
415 l2_cache: l2_backend,
416 l2_cache_concrete: Some(l2_cache),
417 streaming_backend: Some(streaming_backend),
418 total_requests: Arc::new(AtomicU64::new(0)),
419 l1_hits: Arc::new(AtomicU64::new(0)),
420 l2_hits: Arc::new(AtomicU64::new(0)),
421 misses: Arc::new(AtomicU64::new(0)),
422 promotions: Arc::new(AtomicUsize::new(0)),
423 in_flight_requests: Arc::new(DashMap::new()),
424 invalidation_publisher: Some(Arc::new(Mutex::new(publisher))),
425 invalidation_subscriber: Some(Arc::new(subscriber)),
426 invalidation_stats,
427 };
428
429 // Start subscriber with handler
430 manager.start_invalidation_subscriber();
431
432 println!(" ✅ Cache Manager initialized with invalidation support");
433
434 Ok(manager)
435 }
436
437 /// Create new cache manager with multi-tier architecture (v0.5.0+)
438 ///
439 /// This constructor enables dynamic multi-tier caching with 3, 4, or more tiers.
440 /// Tiers are checked in order (lower tier_level = faster/hotter).
441 ///
442 /// # Arguments
443 ///
444 /// * `tiers` - Vector of configured cache tiers (must be sorted by tier_level ascending)
445 /// * `streaming_backend` - Optional streaming backend
446 ///
447 /// # Example
448 ///
449 /// ```rust,ignore
450 /// use multi_tier_cache::{CacheManager, CacheTier, TierConfig, L1Cache, L2Cache};
451 /// use std::sync::Arc;
452 ///
453 /// // L1 + L2 + L3 setup
454 /// let l1 = Arc::new(L1Cache::new().await?);
455 /// let l2 = Arc::new(L2Cache::new().await?);
456 /// let l3 = Arc::new(RocksDBCache::new("/tmp/cache").await?);
457 ///
458 /// let tiers = vec![
459 /// CacheTier::new(l1, 1, false, 1.0), // L1 - no promotion
460 /// CacheTier::new(l2, 2, true, 1.0), // L2 - promote to L1
461 /// CacheTier::new(l3, 3, true, 2.0), // L3 - promote to L2&L1, 2x TTL
462 /// ];
463 ///
464 /// let manager = CacheManager::new_with_tiers(tiers, None).await?;
465 /// ```
466 pub async fn new_with_tiers(
467 tiers: Vec<CacheTier>,
468 streaming_backend: Option<Arc<dyn StreamingBackend>>,
469 ) -> Result<Self> {
470 println!(" 🎯 Initializing Multi-Tier Cache Manager...");
471 println!(" Tier count: {}", tiers.len());
472 for tier in &tiers {
473 println!(
474 " L{}: {} (promotion={}, ttl_scale={})",
475 tier.tier_level,
476 tier.stats.backend_name,
477 tier.promotion_enabled,
478 tier.ttl_scale
479 );
480 }
481
482 // Validate tiers are sorted by level
483 for i in 1..tiers.len() {
484 if tiers[i].tier_level <= tiers[i - 1].tier_level {
485 anyhow::bail!(
486 "Tiers must be sorted by tier_level ascending (found L{} after L{})",
487 tiers[i].tier_level,
488 tiers[i - 1].tier_level
489 );
490 }
491 }
492
493 // For backward compatibility with legacy code, we need dummy l1/l2 caches
494 // Use first tier as l1, second tier as l2 if available
495 let (l1_cache, l2_cache) = if tiers.len() >= 2 {
496 (tiers[0].backend.clone(), tiers[1].backend.clone())
497 } else if tiers.len() == 1 {
498 // Only one tier - use it for both
499 let tier = tiers[0].backend.clone();
500 (tier.clone(), tier)
501 } else {
502 anyhow::bail!("At least one cache tier is required");
503 };
504
505 // Convert to CacheBackend trait for l1 (L2CacheBackend extends CacheBackend)
506 let l1_backend: Arc<dyn CacheBackend> = Arc::new(ProxyCacheBackend {
507 backend: l1_cache.clone(),
508 });
509
510 Ok(Self {
511 tiers: Some(tiers),
512 l1_cache: l1_backend,
513 l2_cache,
514 l2_cache_concrete: None,
515 streaming_backend,
516 total_requests: Arc::new(AtomicU64::new(0)),
517 l1_hits: Arc::new(AtomicU64::new(0)),
518 l2_hits: Arc::new(AtomicU64::new(0)),
519 misses: Arc::new(AtomicU64::new(0)),
520 promotions: Arc::new(AtomicUsize::new(0)),
521 in_flight_requests: Arc::new(DashMap::new()),
522 invalidation_publisher: None,
523 invalidation_subscriber: None,
524 invalidation_stats: Arc::new(AtomicInvalidationStats::default()),
525 })
526 }
527
528 /// Start the invalidation subscriber background task
529 fn start_invalidation_subscriber(&self) {
530 if let Some(subscriber) = &self.invalidation_subscriber {
531 let l1_cache = Arc::clone(&self.l1_cache);
532 let l2_cache_concrete = self.l2_cache_concrete.clone();
533
534 subscriber.start(move |msg| {
535 let l1 = Arc::clone(&l1_cache);
536 let _l2 = l2_cache_concrete.clone();
537
538 async move {
539 match msg {
540 InvalidationMessage::Remove { key } => {
541 // Remove from L1
542 l1.remove(&key).await?;
543 println!("🗑️ [Invalidation] Removed '{}' from L1", key);
544 }
545 InvalidationMessage::Update { key, value, ttl_secs } => {
546 // Update L1 with new value
547 let ttl = ttl_secs
548 .map(Duration::from_secs)
549 .unwrap_or_else(|| Duration::from_secs(300));
550 l1.set_with_ttl(&key, value, ttl).await?;
551 println!("🔄 [Invalidation] Updated '{}' in L1", key);
552 }
553 InvalidationMessage::RemovePattern { pattern } => {
554 // For pattern-based invalidation, we can't easily iterate L1 cache
555 // So we just log it. The pattern invalidation is mainly for L2.
556 // L1 entries will naturally expire via TTL.
557 println!("🔍 [Invalidation] Pattern '{}' invalidated (L1 will expire naturally)", pattern);
558 }
559 InvalidationMessage::RemoveBulk { keys } => {
560 // Remove multiple keys from L1
561 for key in keys {
562 if let Err(e) = l1.remove(&key).await {
563 eprintln!("⚠️ Failed to remove '{}' from L1: {}", key, e);
564 }
565 }
566 println!("🗑️ [Invalidation] Bulk removed keys from L1");
567 }
568 }
569 Ok(())
570 }
571 });
572
573 println!("📡 Invalidation subscriber started");
574 }
575 }
576
577 /// Get value from cache using multi-tier architecture (v0.5.0+)
578 ///
579 /// This method iterates through all configured tiers and automatically promotes
580 /// to upper tiers on cache hit.
581 async fn get_multi_tier(&self, key: &str) -> Result<Option<serde_json::Value>> {
582 let tiers = self.tiers.as_ref().unwrap(); // Safe: only called when tiers is Some
583
584 // Try each tier sequentially (sorted by tier_level)
585 for (tier_index, tier) in tiers.iter().enumerate() {
586 if let Some((value, ttl)) = tier.get_with_ttl(key).await {
587 // Cache hit!
588 tier.record_hit();
589
590 // Promote to all upper tiers (if promotion enabled)
591 if tier.promotion_enabled && tier_index > 0 {
592 let promotion_ttl = ttl.unwrap_or_else(|| CacheStrategy::Default.to_duration());
593
594 // Promote to all tiers above this one
595 for upper_tier in tiers[..tier_index].iter().rev() {
596 if let Err(e) = upper_tier.set_with_ttl(key, value.clone(), promotion_ttl).await {
597 eprintln!(
598 "⚠️ Failed to promote '{}' from L{} to L{}: {}",
599 key, tier.tier_level, upper_tier.tier_level, e
600 );
601 } else {
602 self.promotions.fetch_add(1, Ordering::Relaxed);
603 println!(
604 "⬆️ Promoted '{}' from L{} to L{} (TTL: {:?})",
605 key, tier.tier_level, upper_tier.tier_level, promotion_ttl
606 );
607 }
608 }
609 }
610
611 return Ok(Some(value));
612 }
613 }
614
615 // Cache miss across all tiers
616 Ok(None)
617 }
618
619 /// Get value from cache (L1 first, then L2 fallback with promotion)
620 ///
621 /// This method now includes built-in Cache Stampede protection when cache misses occur.
622 /// Multiple concurrent requests for the same missing key will be coalesced to prevent
623 /// unnecessary duplicate work on external data sources.
624 ///
625 /// Supports both legacy 2-tier mode and new multi-tier mode (v0.5.0+).
626 ///
627 /// # Arguments
628 /// * `key` - Cache key to retrieve
629 ///
630 /// # Returns
631 /// * `Ok(Some(value))` - Cache hit, value found in any tier
632 /// * `Ok(None)` - Cache miss, value not found in any cache
633 /// * `Err(error)` - Cache operation failed
634 pub async fn get(&self, key: &str) -> Result<Option<serde_json::Value>> {
635 self.total_requests.fetch_add(1, Ordering::Relaxed);
636
637 // NEW: Multi-tier mode (v0.5.0+)
638 if self.tiers.is_some() {
639 // Fast path for L1 (first tier) - no locking needed
640 if let Some(tier1) = self.tiers.as_ref().unwrap().first() {
641 if let Some((value, _ttl)) = tier1.get_with_ttl(key).await {
642 tier1.record_hit();
643 // Update legacy stats for backward compatibility
644 self.l1_hits.fetch_add(1, Ordering::Relaxed);
645 return Ok(Some(value));
646 }
647 }
648
649 // L1 miss - use stampede protection for lower tiers
650 let key_owned = key.to_string();
651 let lock_guard = self.in_flight_requests
652 .entry(key_owned.clone())
653 .or_insert_with(|| Arc::new(Mutex::new(())))
654 .clone();
655
656 let _guard = lock_guard.lock().await;
657 let cleanup_guard = CleanupGuard {
658 map: &self.in_flight_requests,
659 key: key_owned.clone(),
660 };
661
662 // Double-check L1 after acquiring lock
663 if let Some(tier1) = self.tiers.as_ref().unwrap().first() {
664 if let Some((value, _ttl)) = tier1.get_with_ttl(key).await {
665 tier1.record_hit();
666 self.l1_hits.fetch_add(1, Ordering::Relaxed);
667 return Ok(Some(value));
668 }
669 }
670
671 // Check remaining tiers with promotion
672 let result = self.get_multi_tier(key).await?;
673
674 if result.is_some() {
675 // Hit in L2+ tier - update legacy stats
676 if self.tiers.as_ref().unwrap().len() >= 2 {
677 self.l2_hits.fetch_add(1, Ordering::Relaxed);
678 }
679 } else {
680 self.misses.fetch_add(1, Ordering::Relaxed);
681 }
682
683 drop(cleanup_guard);
684 return Ok(result);
685 }
686
687 // LEGACY: 2-tier mode (L1 + L2)
688 // Fast path: Try L1 first (no locking needed)
689 if let Some(value) = self.l1_cache.get(key).await {
690 self.l1_hits.fetch_add(1, Ordering::Relaxed);
691 return Ok(Some(value));
692 }
693
694 // L1 miss - implement Cache Stampede protection for L2 lookup
695 let key_owned = key.to_string();
696 let lock_guard = self.in_flight_requests
697 .entry(key_owned.clone())
698 .or_insert_with(|| Arc::new(Mutex::new(())))
699 .clone();
700
701 let _guard = lock_guard.lock().await;
702
703 // RAII cleanup guard - ensures entry is removed even on early return or panic
704 let cleanup_guard = CleanupGuard {
705 map: &self.in_flight_requests,
706 key: key_owned.clone(),
707 };
708
709 // Double-check L1 cache after acquiring lock
710 // (Another concurrent request might have populated it while we were waiting)
711 if let Some(value) = self.l1_cache.get(key).await {
712 self.l1_hits.fetch_add(1, Ordering::Relaxed);
713 // cleanup_guard will auto-remove entry on drop
714 return Ok(Some(value));
715 }
716
717 // Check L2 cache with TTL information
718 if let Some((value, ttl)) = self.l2_cache.get_with_ttl(key).await {
719 self.l2_hits.fetch_add(1, Ordering::Relaxed);
720
721 // Promote to L1 with same TTL as Redis (or default if no TTL)
722 let promotion_ttl = ttl.unwrap_or_else(|| CacheStrategy::Default.to_duration());
723
724 if let Err(_) = self.l1_cache.set_with_ttl(key, value.clone(), promotion_ttl).await {
725 // L1 promotion failed, but we still have the data
726 eprintln!("⚠️ Failed to promote key '{}' to L1 cache", key);
727 } else {
728 self.promotions.fetch_add(1, Ordering::Relaxed);
729 println!("⬆️ Promoted '{}' from L2 to L1 with TTL {:?} (via get)", key, promotion_ttl);
730 }
731
732 // cleanup_guard will auto-remove entry on drop
733 return Ok(Some(value));
734 }
735
736 // Both L1 and L2 miss
737 self.misses.fetch_add(1, Ordering::Relaxed);
738
739 // cleanup_guard will auto-remove entry on drop
740 drop(cleanup_guard);
741
742 Ok(None)
743 }
744
745 /// Get value from cache with fallback computation (enhanced backward compatibility)
746 ///
747 /// This is a convenience method that combines `get()` with optional computation.
748 /// If the value is not found in cache, it will execute the compute function
749 /// and cache the result automatically.
750 ///
751 /// # Arguments
752 /// * `key` - Cache key
753 /// * `compute_fn` - Optional function to compute value if not in cache
754 /// * `strategy` - Cache strategy for storing computed value (default: ShortTerm)
755 ///
756 /// # Returns
757 /// * `Ok(Some(value))` - Value found in cache or computed successfully
758 /// * `Ok(None)` - Value not in cache and no compute function provided
759 /// * `Err(error)` - Cache operation or computation failed
760 ///
761 /// # Example
762 /// ```ignore
763 /// // Simple cache get (existing behavior)
764 /// let cached_data = cache_manager.get_with_fallback("my_key", None, None).await?;
765 ///
766 /// // Get with computation fallback (new enhanced behavior)
767 /// let api_data = cache_manager.get_with_fallback(
768 /// "api_response",
769 /// Some(|| async { fetch_data_from_api().await }),
770 /// Some(CacheStrategy::RealTime)
771 /// ).await?;
772 /// ```
773
774 /// Set value with specific cache strategy (all tiers)
775 ///
776 /// Supports both legacy 2-tier mode and new multi-tier mode (v0.5.0+).
777 /// In multi-tier mode, stores to ALL tiers with their respective TTL scaling.
778 pub async fn set_with_strategy(&self, key: &str, value: serde_json::Value, strategy: CacheStrategy) -> Result<()> {
779 let ttl = strategy.to_duration();
780
781 // NEW: Multi-tier mode (v0.5.0+)
782 if let Some(tiers) = &self.tiers {
783 // Store in ALL tiers with their respective TTL scaling
784 let mut success_count = 0;
785 let mut last_error = None;
786
787 for tier in tiers {
788 match tier.set_with_ttl(key, value.clone(), ttl).await {
789 Ok(_) => {
790 success_count += 1;
791 }
792 Err(e) => {
793 eprintln!("⚠️ L{} cache set failed for key '{}': {}", tier.tier_level, key, e);
794 last_error = Some(e);
795 }
796 }
797 }
798
799 if success_count > 0 {
800 println!("💾 [Multi-Tier] Cached '{}' in {}/{} tiers (base TTL: {:?})",
801 key, success_count, tiers.len(), ttl);
802 return Ok(());
803 } else {
804 return Err(last_error.unwrap_or_else(|| anyhow::anyhow!("All tiers failed for key '{}'", key)));
805 }
806 }
807
808 // LEGACY: 2-tier mode (L1 + L2)
809 // Store in both L1 and L2
810 let l1_result = self.l1_cache.set_with_ttl(key, value.clone(), ttl).await;
811 let l2_result = self.l2_cache.set_with_ttl(key, value, ttl).await;
812
813 // Return success if at least one cache succeeded
814 match (l1_result, l2_result) {
815 (Ok(_), Ok(_)) => {
816 // Both succeeded
817 println!("💾 [L1+L2] Cached '{}' with TTL {:?}", key, ttl);
818 Ok(())
819 }
820 (Ok(_), Err(_)) => {
821 // L1 succeeded, L2 failed
822 eprintln!("⚠️ L2 cache set failed for key '{}', continuing with L1", key);
823 println!("💾 [L1] Cached '{}' with TTL {:?}", key, ttl);
824 Ok(())
825 }
826 (Err(_), Ok(_)) => {
827 // L1 failed, L2 succeeded
828 eprintln!("⚠️ L1 cache set failed for key '{}', continuing with L2", key);
829 println!("💾 [L2] Cached '{}' with TTL {:?}", key, ttl);
830 Ok(())
831 }
832 (Err(e1), Err(_e2)) => {
833 // Both failed
834 Err(anyhow::anyhow!("Both L1 and L2 cache set failed for key '{}': {}", key, e1))
835 }
836 }
837 }
838
839 /// Get or compute value with Cache Stampede protection across L1+L2+Compute
840 ///
841 /// This method provides comprehensive Cache Stampede protection:
842 /// 1. Check L1 cache first (uses Moka's built-in coalescing)
843 /// 2. Check L2 cache with mutex-based coalescing
844 /// 3. Compute fresh data with protection against concurrent computations
845 ///
846 /// # Arguments
847 /// * `key` - Cache key
848 /// * `strategy` - Cache strategy for TTL and storage behavior
849 /// * `compute_fn` - Async function to compute the value if not in any cache
850 ///
851 /// # Example
852 /// ```ignore
853 /// let api_data = cache_manager.get_or_compute_with(
854 /// "api_response",
855 /// CacheStrategy::RealTime,
856 /// || async {
857 /// fetch_data_from_api().await
858 /// }
859 /// ).await?;
860 /// ```
861 #[allow(dead_code)]
862 pub async fn get_or_compute_with<F, Fut>(
863 &self,
864 key: &str,
865 strategy: CacheStrategy,
866 compute_fn: F,
867 ) -> Result<serde_json::Value>
868 where
869 F: FnOnce() -> Fut + Send,
870 Fut: Future<Output = Result<serde_json::Value>> + Send,
871 {
872 self.total_requests.fetch_add(1, Ordering::Relaxed);
873
874 // 1. Try L1 cache first (with built-in Moka coalescing for hot data)
875 if let Some(value) = self.l1_cache.get(key).await {
876 self.l1_hits.fetch_add(1, Ordering::Relaxed);
877 return Ok(value);
878 }
879
880 // 2. L1 miss - try L2 with Cache Stampede protection
881 let key_owned = key.to_string();
882 let lock_guard = self.in_flight_requests
883 .entry(key_owned.clone())
884 .or_insert_with(|| Arc::new(Mutex::new(())))
885 .clone();
886
887 let _guard = lock_guard.lock().await;
888
889 // RAII cleanup guard - ensures entry is removed even on early return or panic
890 let _cleanup_guard = CleanupGuard {
891 map: &self.in_flight_requests,
892 key: key_owned,
893 };
894
895 // 3. Double-check L1 cache after acquiring lock
896 // (Another request might have populated it while we were waiting)
897 if let Some(value) = self.l1_cache.get(key).await {
898 self.l1_hits.fetch_add(1, Ordering::Relaxed);
899 // _cleanup_guard will auto-remove entry on drop
900 return Ok(value);
901 }
902
903 // 4. Check L2 cache with TTL
904 if let Some((value, redis_ttl)) = self.l2_cache.get_with_ttl(key).await {
905 self.l2_hits.fetch_add(1, Ordering::Relaxed);
906
907 // Promote to L1 using Redis TTL (or strategy TTL as fallback)
908 let promotion_ttl = redis_ttl.unwrap_or_else(|| strategy.to_duration());
909
910 if let Err(e) = self.l1_cache.set_with_ttl(key, value.clone(), promotion_ttl).await {
911 eprintln!("⚠️ Failed to promote key '{}' to L1: {}", key, e);
912 } else {
913 self.promotions.fetch_add(1, Ordering::Relaxed);
914 println!("⬆️ Promoted '{}' from L2 to L1 with TTL {:?}", key, promotion_ttl);
915 }
916
917 // _cleanup_guard will auto-remove entry on drop
918 return Ok(value);
919 }
920
921 // 5. Both L1 and L2 miss - compute fresh data
922 println!("💻 Computing fresh data for key: '{}' (Cache Stampede protected)", key);
923 let fresh_data = compute_fn().await?;
924
925 // 6. Store in both caches
926 if let Err(e) = self.set_with_strategy(key, fresh_data.clone(), strategy).await {
927 eprintln!("⚠️ Failed to cache computed data for key '{}': {}", key, e);
928 }
929
930 // 7. _cleanup_guard will auto-remove entry on drop
931
932 Ok(fresh_data)
933 }
934
935 /// Get or compute typed value with Cache Stampede protection (Type-Safe Version)
936 ///
937 /// This method provides the same functionality as `get_or_compute_with()` but with
938 /// **type-safe** automatic serialization/deserialization. Perfect for database queries,
939 /// API calls, or any computation that returns structured data.
940 ///
941 /// # Type Safety
942 ///
943 /// - Returns your actual type `T` instead of `serde_json::Value`
944 /// - Compiler enforces Serialize + DeserializeOwned bounds
945 /// - No manual JSON conversion needed
946 ///
947 /// # Cache Flow
948 ///
949 /// 1. Check L1 cache → deserialize if found
950 /// 2. Check L2 cache → deserialize + promote to L1 if found
951 /// 3. Execute compute_fn → serialize → store in L1+L2
952 /// 4. Full stampede protection (only ONE request computes)
953 ///
954 /// # Arguments
955 ///
956 /// * `key` - Cache key
957 /// * `strategy` - Cache strategy for TTL
958 /// * `compute_fn` - Async function returning `Result<T>`
959 ///
960 /// # Example - Database Query
961 ///
962 /// ```no_run
963 /// # use multi_tier_cache::{CacheManager, CacheStrategy, L1Cache, L2Cache};
964 /// # use std::sync::Arc;
965 /// # use serde::{Serialize, Deserialize};
966 /// # async fn example() -> anyhow::Result<()> {
967 /// # let l1 = Arc::new(L1Cache::new().await?);
968 /// # let l2 = Arc::new(L2Cache::new().await?);
969 /// # let cache_manager = CacheManager::new(l1, l2);
970 ///
971 /// #[derive(Serialize, Deserialize)]
972 /// struct User {
973 /// id: i64,
974 /// name: String,
975 /// }
976 ///
977 /// // Type-safe database caching (example - requires sqlx)
978 /// // let user: User = cache_manager.get_or_compute_typed(
979 /// // "user:123",
980 /// // CacheStrategy::MediumTerm,
981 /// // || async {
982 /// // sqlx::query_as::<_, User>("SELECT * FROM users WHERE id = $1")
983 /// // .bind(123)
984 /// // .fetch_one(&pool)
985 /// // .await
986 /// // }
987 /// // ).await?;
988 /// # Ok(())
989 /// # }
990 /// ```
991 ///
992 /// # Example - API Call
993 ///
994 /// ```no_run
995 /// # use multi_tier_cache::{CacheManager, CacheStrategy, L1Cache, L2Cache};
996 /// # use std::sync::Arc;
997 /// # use serde::{Serialize, Deserialize};
998 /// # async fn example() -> anyhow::Result<()> {
999 /// # let l1 = Arc::new(L1Cache::new().await?);
1000 /// # let l2 = Arc::new(L2Cache::new().await?);
1001 /// # let cache_manager = CacheManager::new(l1, l2);
1002 /// #[derive(Serialize, Deserialize)]
1003 /// struct ApiResponse {
1004 /// data: String,
1005 /// timestamp: i64,
1006 /// }
1007 ///
1008 /// // API call caching (example - requires reqwest)
1009 /// // let response: ApiResponse = cache_manager.get_or_compute_typed(
1010 /// // "api:endpoint",
1011 /// // CacheStrategy::RealTime,
1012 /// // || async {
1013 /// // reqwest::get("https://api.example.com/data")
1014 /// // .await?
1015 /// // .json::<ApiResponse>()
1016 /// // .await
1017 /// // }
1018 /// // ).await?;
1019 /// # Ok(())
1020 /// # }
1021 /// ```
1022 ///
1023 /// # Performance
1024 ///
1025 /// - L1 hit: <1ms + deserialization (~10-50μs for small structs)
1026 /// - L2 hit: 2-5ms + deserialization + L1 promotion
1027 /// - Compute: Your function time + serialization + L1+L2 storage
1028 /// - Stampede protection: 99.6% latency reduction under high concurrency
1029 ///
1030 /// # Errors
1031 ///
1032 /// Returns error if:
1033 /// - Compute function fails
1034 /// - Serialization fails (invalid type for JSON)
1035 /// - Deserialization fails (cache data doesn't match type T)
1036 /// - Cache operations fail (Redis connection issues)
1037 pub async fn get_or_compute_typed<T, F, Fut>(
1038 &self,
1039 key: &str,
1040 strategy: CacheStrategy,
1041 compute_fn: F,
1042 ) -> Result<T>
1043 where
1044 T: serde::Serialize + serde::de::DeserializeOwned + Send + 'static,
1045 F: FnOnce() -> Fut + Send,
1046 Fut: Future<Output = Result<T>> + Send,
1047 {
1048 self.total_requests.fetch_add(1, Ordering::Relaxed);
1049
1050 // 1. Try L1 cache first (with built-in Moka coalescing for hot data)
1051 if let Some(cached_json) = self.l1_cache.get(key).await {
1052 self.l1_hits.fetch_add(1, Ordering::Relaxed);
1053
1054 // Attempt to deserialize from JSON to type T
1055 match serde_json::from_value::<T>(cached_json) {
1056 Ok(typed_value) => {
1057 println!("✅ [L1 HIT] Deserialized '{}' to type {}", key, std::any::type_name::<T>());
1058 return Ok(typed_value);
1059 }
1060 Err(e) => {
1061 // Deserialization failed - cache data may be stale or corrupt
1062 eprintln!("⚠️ L1 cache deserialization failed for key '{}': {}. Will recompute.", key, e);
1063 // Fall through to recompute
1064 }
1065 }
1066 }
1067
1068 // 2. L1 miss - try L2 with Cache Stampede protection
1069 let key_owned = key.to_string();
1070 let lock_guard = self.in_flight_requests
1071 .entry(key_owned.clone())
1072 .or_insert_with(|| Arc::new(Mutex::new(())))
1073 .clone();
1074
1075 let _guard = lock_guard.lock().await;
1076
1077 // RAII cleanup guard - ensures entry is removed even on early return or panic
1078 let _cleanup_guard = CleanupGuard {
1079 map: &self.in_flight_requests,
1080 key: key_owned,
1081 };
1082
1083 // 3. Double-check L1 cache after acquiring lock
1084 // (Another request might have populated it while we were waiting)
1085 if let Some(cached_json) = self.l1_cache.get(key).await {
1086 self.l1_hits.fetch_add(1, Ordering::Relaxed);
1087 if let Ok(typed_value) = serde_json::from_value::<T>(cached_json) {
1088 println!("✅ [L1 HIT] Deserialized '{}' after lock acquisition", key);
1089 return Ok(typed_value);
1090 }
1091 }
1092
1093 // 4. Check L2 cache with TTL
1094 if let Some((cached_json, redis_ttl)) = self.l2_cache.get_with_ttl(key).await {
1095 self.l2_hits.fetch_add(1, Ordering::Relaxed);
1096
1097 // Attempt to deserialize
1098 match serde_json::from_value::<T>(cached_json.clone()) {
1099 Ok(typed_value) => {
1100 println!("✅ [L2 HIT] Deserialized '{}' from Redis", key);
1101
1102 // Promote to L1 using Redis TTL (or strategy TTL as fallback)
1103 let promotion_ttl = redis_ttl.unwrap_or_else(|| strategy.to_duration());
1104
1105 if let Err(e) = self.l1_cache.set_with_ttl(key, cached_json, promotion_ttl).await {
1106 eprintln!("⚠️ Failed to promote key '{}' to L1: {}", key, e);
1107 } else {
1108 self.promotions.fetch_add(1, Ordering::Relaxed);
1109 println!("⬆️ Promoted '{}' from L2 to L1 with TTL {:?}", key, promotion_ttl);
1110 }
1111
1112 return Ok(typed_value);
1113 }
1114 Err(e) => {
1115 eprintln!("⚠️ L2 cache deserialization failed for key '{}': {}. Will recompute.", key, e);
1116 // Fall through to recompute
1117 }
1118 }
1119 }
1120
1121 // 5. Both L1 and L2 miss (or deserialization failed) - compute fresh data
1122 println!("💻 Computing fresh typed data for key: '{}' (Cache Stampede protected)", key);
1123 let typed_value = compute_fn().await?;
1124
1125 // 6. Serialize to JSON for storage
1126 let json_value = serde_json::to_value(&typed_value)
1127 .map_err(|e| anyhow::anyhow!("Failed to serialize type {} for caching: {}", std::any::type_name::<T>(), e))?;
1128
1129 // 7. Store in both L1 and L2 caches
1130 if let Err(e) = self.set_with_strategy(key, json_value, strategy).await {
1131 eprintln!("⚠️ Failed to cache computed typed data for key '{}': {}", key, e);
1132 } else {
1133 println!("💾 Cached typed value for '{}' (type: {})", key, std::any::type_name::<T>());
1134 }
1135
1136 // 8. _cleanup_guard will auto-remove entry on drop
1137
1138 Ok(typed_value)
1139 }
1140
1141 /// Get comprehensive cache statistics
1142 ///
1143 /// In multi-tier mode, aggregates statistics from all tiers.
1144 /// In legacy mode, returns L1 and L2 stats.
1145 #[allow(dead_code)]
1146 pub fn get_stats(&self) -> CacheManagerStats {
1147 let total_reqs = self.total_requests.load(Ordering::Relaxed);
1148 let l1_hits = self.l1_hits.load(Ordering::Relaxed);
1149 let l2_hits = self.l2_hits.load(Ordering::Relaxed);
1150 let misses = self.misses.load(Ordering::Relaxed);
1151
1152 CacheManagerStats {
1153 total_requests: total_reqs,
1154 l1_hits,
1155 l2_hits,
1156 total_hits: l1_hits + l2_hits,
1157 misses,
1158 hit_rate: if total_reqs > 0 {
1159 ((l1_hits + l2_hits) as f64 / total_reqs as f64) * 100.0
1160 } else { 0.0 },
1161 l1_hit_rate: if total_reqs > 0 {
1162 (l1_hits as f64 / total_reqs as f64) * 100.0
1163 } else { 0.0 },
1164 promotions: self.promotions.load(Ordering::Relaxed),
1165 in_flight_requests: self.in_flight_requests.len(),
1166 }
1167 }
1168
1169 /// Get per-tier statistics (v0.5.0+)
1170 ///
1171 /// Returns statistics for each tier if multi-tier mode is enabled.
1172 /// Returns None if using legacy 2-tier mode.
1173 ///
1174 /// # Example
1175 /// ```rust,ignore
1176 /// if let Some(tier_stats) = cache_manager.get_tier_stats() {
1177 /// for stats in tier_stats {
1178 /// println!("L{}: {} hits ({})",
1179 /// stats.tier_level,
1180 /// stats.hit_count(),
1181 /// stats.backend_name);
1182 /// }
1183 /// }
1184 /// ```
1185 pub fn get_tier_stats(&self) -> Option<Vec<TierStats>> {
1186 self.tiers.as_ref().map(|tiers| {
1187 tiers.iter().map(|tier| tier.stats.clone()).collect()
1188 })
1189 }
1190
1191 // ===== Redis Streams Methods =====
1192
1193 /// Publish data to Redis Stream
1194 ///
1195 /// # Arguments
1196 /// * `stream_key` - Name of the stream (e.g., "events_stream")
1197 /// * `fields` - Field-value pairs to publish
1198 /// * `maxlen` - Optional max length for stream trimming
1199 ///
1200 /// # Returns
1201 /// The entry ID generated by Redis
1202 ///
1203 /// # Errors
1204 /// Returns error if streaming backend is not configured
1205 pub async fn publish_to_stream(
1206 &self,
1207 stream_key: &str,
1208 fields: Vec<(String, String)>,
1209 maxlen: Option<usize>
1210 ) -> Result<String> {
1211 match &self.streaming_backend {
1212 Some(backend) => backend.stream_add(stream_key, fields, maxlen).await,
1213 None => Err(anyhow::anyhow!("Streaming backend not configured"))
1214 }
1215 }
1216
1217 /// Read latest entries from Redis Stream
1218 ///
1219 /// # Arguments
1220 /// * `stream_key` - Name of the stream
1221 /// * `count` - Number of latest entries to retrieve
1222 ///
1223 /// # Returns
1224 /// Vector of (entry_id, fields) tuples (newest first)
1225 ///
1226 /// # Errors
1227 /// Returns error if streaming backend is not configured
1228 pub async fn read_stream_latest(
1229 &self,
1230 stream_key: &str,
1231 count: usize
1232 ) -> Result<Vec<(String, Vec<(String, String)>)>> {
1233 match &self.streaming_backend {
1234 Some(backend) => backend.stream_read_latest(stream_key, count).await,
1235 None => Err(anyhow::anyhow!("Streaming backend not configured"))
1236 }
1237 }
1238
1239 /// Read from Redis Stream with optional blocking
1240 ///
1241 /// # Arguments
1242 /// * `stream_key` - Name of the stream
1243 /// * `last_id` - Last ID seen ("0" for start, "$" for new only)
1244 /// * `count` - Max entries to retrieve
1245 /// * `block_ms` - Optional blocking timeout in ms
1246 ///
1247 /// # Returns
1248 /// Vector of (entry_id, fields) tuples
1249 ///
1250 /// # Errors
1251 /// Returns error if streaming backend is not configured
1252 pub async fn read_stream(
1253 &self,
1254 stream_key: &str,
1255 last_id: &str,
1256 count: usize,
1257 block_ms: Option<usize>
1258 ) -> Result<Vec<(String, Vec<(String, String)>)>> {
1259 match &self.streaming_backend {
1260 Some(backend) => backend.stream_read(stream_key, last_id, count, block_ms).await,
1261 None => Err(anyhow::anyhow!("Streaming backend not configured"))
1262 }
1263 }
1264
1265 // ===== Cache Invalidation Methods =====
1266
1267 /// Invalidate a cache key across all instances
1268 ///
1269 /// This removes the key from all cache tiers and broadcasts
1270 /// the invalidation to all other cache instances via Redis Pub/Sub.
1271 ///
1272 /// Supports both legacy 2-tier mode and new multi-tier mode (v0.5.0+).
1273 ///
1274 /// # Arguments
1275 /// * `key` - Cache key to invalidate
1276 ///
1277 /// # Example
1278 /// ```rust,ignore
1279 /// // Invalidate user cache after profile update
1280 /// cache_manager.invalidate("user:123").await?;
1281 /// ```
1282 pub async fn invalidate(&self, key: &str) -> Result<()> {
1283 // NEW: Multi-tier mode (v0.5.0+)
1284 if let Some(tiers) = &self.tiers {
1285 // Remove from ALL tiers
1286 for tier in tiers {
1287 if let Err(e) = tier.remove(key).await {
1288 eprintln!("⚠️ Failed to remove '{}' from L{}: {}", key, tier.tier_level, e);
1289 }
1290 }
1291 } else {
1292 // LEGACY: 2-tier mode
1293 self.l1_cache.remove(key).await?;
1294 self.l2_cache.remove(key).await?;
1295 }
1296
1297 // Broadcast to other instances
1298 if let Some(publisher) = &self.invalidation_publisher {
1299 let mut pub_lock = publisher.lock().await;
1300 let msg = InvalidationMessage::remove(key);
1301 pub_lock.publish(&msg).await?;
1302 self.invalidation_stats.messages_sent.fetch_add(1, Ordering::Relaxed);
1303 }
1304
1305 println!("🗑️ Invalidated '{}' across all instances", key);
1306 Ok(())
1307 }
1308
1309 /// Update cache value across all instances
1310 ///
1311 /// This updates the key in all cache tiers and broadcasts
1312 /// the update to all other cache instances, avoiding cache misses.
1313 ///
1314 /// Supports both legacy 2-tier mode and new multi-tier mode (v0.5.0+).
1315 ///
1316 /// # Arguments
1317 /// * `key` - Cache key to update
1318 /// * `value` - New value
1319 /// * `ttl` - Optional TTL (uses default if None)
1320 ///
1321 /// # Example
1322 /// ```rust,ignore
1323 /// // Update user cache with new data
1324 /// let user_data = serde_json::json!({"id": 123, "name": "Alice"});
1325 /// cache_manager.update_cache("user:123", user_data, Some(Duration::from_secs(3600))).await?;
1326 /// ```
1327 pub async fn update_cache(
1328 &self,
1329 key: &str,
1330 value: serde_json::Value,
1331 ttl: Option<Duration>,
1332 ) -> Result<()> {
1333 let ttl = ttl.unwrap_or_else(|| CacheStrategy::Default.to_duration());
1334
1335 // NEW: Multi-tier mode (v0.5.0+)
1336 if let Some(tiers) = &self.tiers {
1337 // Update ALL tiers with their respective TTL scaling
1338 for tier in tiers {
1339 if let Err(e) = tier.set_with_ttl(key, value.clone(), ttl).await {
1340 eprintln!("⚠️ Failed to update '{}' in L{}: {}", key, tier.tier_level, e);
1341 }
1342 }
1343 } else {
1344 // LEGACY: 2-tier mode
1345 self.l1_cache.set_with_ttl(key, value.clone(), ttl).await?;
1346 self.l2_cache.set_with_ttl(key, value.clone(), ttl).await?;
1347 }
1348
1349 // Broadcast update to other instances
1350 if let Some(publisher) = &self.invalidation_publisher {
1351 let mut pub_lock = publisher.lock().await;
1352 let msg = InvalidationMessage::update(key, value, Some(ttl));
1353 pub_lock.publish(&msg).await?;
1354 self.invalidation_stats.messages_sent.fetch_add(1, Ordering::Relaxed);
1355 }
1356
1357 println!("🔄 Updated '{}' across all instances", key);
1358 Ok(())
1359 }
1360
1361 /// Invalidate all keys matching a pattern
1362 ///
1363 /// This scans L2 cache for keys matching the pattern, removes them from all tiers,
1364 /// and broadcasts the invalidation. L1 caches will be cleared via broadcast.
1365 ///
1366 /// Supports both legacy 2-tier mode and new multi-tier mode (v0.5.0+).
1367 ///
1368 /// **Note**: Pattern scanning requires a concrete L2Cache instance with `scan_keys()`.
1369 /// In multi-tier mode, this scans from L2 but removes from all tiers.
1370 ///
1371 /// # Arguments
1372 /// * `pattern` - Glob-style pattern (e.g., "user:*", "product:123:*")
1373 ///
1374 /// # Example
1375 /// ```rust,ignore
1376 /// // Invalidate all user caches
1377 /// cache_manager.invalidate_pattern("user:*").await?;
1378 ///
1379 /// // Invalidate specific user's related caches
1380 /// cache_manager.invalidate_pattern("user:123:*").await?;
1381 /// ```
1382 pub async fn invalidate_pattern(&self, pattern: &str) -> Result<()> {
1383 // Scan L2 for matching keys
1384 // (Note: Pattern scanning requires concrete L2Cache with scan_keys support)
1385 let keys = if let Some(l2) = &self.l2_cache_concrete {
1386 l2.scan_keys(pattern).await?
1387 } else {
1388 return Err(anyhow::anyhow!("Pattern invalidation requires concrete L2Cache instance"));
1389 };
1390
1391 if keys.is_empty() {
1392 println!("🔍 No keys found matching pattern '{}'", pattern);
1393 return Ok(());
1394 }
1395
1396 // NEW: Multi-tier mode (v0.5.0+)
1397 if let Some(tiers) = &self.tiers {
1398 // Remove from ALL tiers
1399 for key in &keys {
1400 for tier in tiers {
1401 if let Err(e) = tier.remove(key).await {
1402 eprintln!("⚠️ Failed to remove '{}' from L{}: {}", key, tier.tier_level, e);
1403 }
1404 }
1405 }
1406 } else {
1407 // LEGACY: 2-tier mode - Remove from L2 in bulk
1408 if let Some(l2) = &self.l2_cache_concrete {
1409 l2.remove_bulk(&keys).await?;
1410 }
1411 }
1412
1413 // Broadcast pattern invalidation
1414 if let Some(publisher) = &self.invalidation_publisher {
1415 let mut pub_lock = publisher.lock().await;
1416 let msg = InvalidationMessage::remove_bulk(keys.clone());
1417 pub_lock.publish(&msg).await?;
1418 self.invalidation_stats.messages_sent.fetch_add(1, Ordering::Relaxed);
1419 }
1420
1421 println!("🔍 Invalidated {} keys matching pattern '{}'", keys.len(), pattern);
1422 Ok(())
1423 }
1424
1425 /// Set value with automatic broadcast to all instances
1426 ///
1427 /// This is a write-through operation that updates the cache and
1428 /// broadcasts the update to all other instances automatically.
1429 ///
1430 /// # Arguments
1431 /// * `key` - Cache key
1432 /// * `value` - Value to cache
1433 /// * `strategy` - Cache strategy (determines TTL)
1434 ///
1435 /// # Example
1436 /// ```rust,ignore
1437 /// // Update and broadcast in one call
1438 /// let data = serde_json::json!({"status": "active"});
1439 /// cache_manager.set_with_broadcast("user:123", data, CacheStrategy::MediumTerm).await?;
1440 /// ```
1441 pub async fn set_with_broadcast(
1442 &self,
1443 key: &str,
1444 value: serde_json::Value,
1445 strategy: CacheStrategy,
1446 ) -> Result<()> {
1447 let ttl = strategy.to_duration();
1448
1449 // Set in local caches
1450 self.set_with_strategy(key, value.clone(), strategy).await?;
1451
1452 // Broadcast update if invalidation is enabled
1453 if let Some(publisher) = &self.invalidation_publisher {
1454 let mut pub_lock = publisher.lock().await;
1455 let msg = InvalidationMessage::update(key, value, Some(ttl));
1456 pub_lock.publish(&msg).await?;
1457 self.invalidation_stats.messages_sent.fetch_add(1, Ordering::Relaxed);
1458 }
1459
1460 Ok(())
1461 }
1462
1463 /// Get invalidation statistics
1464 ///
1465 /// Returns statistics about invalidation operations if invalidation is enabled.
1466 pub fn get_invalidation_stats(&self) -> Option<InvalidationStats> {
1467 if self.invalidation_subscriber.is_some() {
1468 Some(self.invalidation_stats.snapshot())
1469 } else {
1470 None
1471 }
1472 }
1473}
1474
1475/// Cache Manager statistics
1476#[allow(dead_code)]
1477#[derive(Debug, Clone)]
1478pub struct CacheManagerStats {
1479 pub total_requests: u64,
1480 pub l1_hits: u64,
1481 pub l2_hits: u64,
1482 pub total_hits: u64,
1483 pub misses: u64,
1484 pub hit_rate: f64,
1485 pub l1_hit_rate: f64,
1486 pub promotions: usize,
1487 pub in_flight_requests: usize,
1488}