1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//! provides diffing algorithm which returns patches
use crate::{
    node::attribute::group_attributes_per_name, Attribute, Element, Node,
    Patch, TreePath,
};
use std::fmt::Debug;
use std::{cmp, mem};

mod keyed;

/// Return the patches needed for `old_node` to have the same DOM as `new_node`
///
/// # Agruments
/// * old_node - the old virtual dom node
/// * new_node - the new virtual dom node
/// * key - the literal name of key attribute, ie: "key"
///
/// # Example
/// ```rust
/// use mt_dom::{diff::*, patch::*, *};
///
/// pub type MyNode =
///    Node<&'static str, &'static str, &'static str, &'static str, &'static str>;
///
/// let old: MyNode = element(
///     "main",
///     vec![attr("class", "container")],
///     vec![
///         element("div", vec![attr("key", "1")], vec![]),
///         element("div", vec![attr("key", "2")], vec![]),
///     ],
/// );
///
/// let new: MyNode = element(
///     "main",
///     vec![attr("class", "container")],
///     vec![element("div", vec![attr("key", "2")], vec![])],
/// );
///
/// let diff = diff_with_key(&old, &new, &"key");
/// assert_eq!(
///     diff,
///     vec![Patch::remove_node(
///         Some(&"div"),
///         TreePath::new(vec![ 0]),
///     )
///     ]
/// );
/// ```
pub fn diff_with_key<'a, NS, TAG, LEAF, ATT, VAL>(
    old_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    new_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    key: &ATT,
) -> Vec<Patch<'a, NS, TAG, LEAF, ATT, VAL>>
where
    NS: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    LEAF: PartialEq + Clone + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,
{
    diff_recursive(
        old_node,
        new_node,
        &TreePath::root(),
        key,
        &|_old, _new| false,
        &|_old, _new| false,
    )
}

/// calculate the difference of 2 nodes
/// if the skip function evaluates to true, then diffing of
/// the node and all of it's descendant will be skipped entirely and then proceed to the next node.
///
/// The SKIP fn is passed to check whether the diffing of the old and new element should be
/// skipped, and assumed no changes. This is for optimization where the developer is sure that
/// the dom tree hasn't change.
///
/// REP fn stands for replace function which decides if the new element should
/// just replace the old element without diffing
///
pub fn diff_with_functions<'a, NS, TAG, LEAF, ATT, VAL, SKIP, REP>(
    old_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    new_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    key: &ATT,
    skip: &SKIP,
    rep: &REP,
) -> Vec<Patch<'a, NS, TAG, LEAF, ATT, VAL>>
where
    NS: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    LEAF: PartialEq + Clone + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,

    SKIP: Fn(
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
    ) -> bool,
    REP: Fn(
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
    ) -> bool,
{
    diff_recursive(old_node, new_node, &TreePath::root(), key, skip, rep)
}

/// returns true if any of the children of this element has key in their attributes
fn is_any_children_keyed<NS, TAG, LEAF, ATT, VAL>(
    element: &Element<NS, TAG, LEAF, ATT, VAL>,
    key: &ATT,
) -> bool
where
    NS: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    LEAF: PartialEq + Clone + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,
{
    element
        .children
        .iter()
        .any(|child| is_keyed_node(child, key))
}

/// returns true any attributes of this node attribute has key in it
fn is_keyed_node<NS, TAG, LEAF, ATT, VAL>(
    node: &Node<NS, TAG, LEAF, ATT, VAL>,
    key: &ATT,
) -> bool
where
    NS: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    LEAF: PartialEq + Clone + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,
{
    if let Some(attributes) = node.get_attributes() {
        attributes.iter().any(|att| att.name == *key)
    } else {
        false
    }
}

fn should_replace<'a, 'b, NS, TAG, LEAF, ATT, VAL, REP>(
    old_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    new_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    key: &ATT,
    rep: &REP,
) -> bool
where
    NS: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    LEAF: PartialEq + Clone + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,
    REP: Fn(
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
    ) -> bool,
{
    // replace if they have different enum variants
    if mem::discriminant(old_node) != mem::discriminant(new_node) {
        return true;
    }

    // handle explicit replace if the REP fn evaluates to true
    if rep(old_node, new_node) {
        return true;
    }

    // replace if the old key does not match the new key
    if let (Some(old_key), Some(new_key)) = (
        old_node.get_attribute_value(key),
        new_node.get_attribute_value(key),
    ) {
        if old_key != new_key {
            return true;
        }
    }
    // replace if they have different element tag
    if let (Node::Element(old_element), Node::Element(new_element)) =
        (old_node, new_node)
    {
        // Replace if there are different element tags
        if old_element.tag != new_element.tag {
            return true;
        }
    }
    false
}

fn diff_recursive<'a, 'b, NS, TAG, LEAF, ATT, VAL, SKIP, REP>(
    old_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    new_node: &'a Node<NS, TAG, LEAF, ATT, VAL>,
    path: &TreePath,
    key: &ATT,
    skip: &SKIP,
    rep: &REP,
) -> Vec<Patch<'a, NS, TAG, LEAF, ATT, VAL>>
where
    NS: PartialEq + Clone + Debug,
    LEAF: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,
    SKIP: Fn(
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
    ) -> bool,
    REP: Fn(
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
    ) -> bool,
{
    // skip diffing if the function evaluates to true
    if skip(old_node, new_node) {
        return vec![];
    }

    // replace node and return early
    if should_replace(old_node, new_node, key, rep) {
        return vec![Patch::replace_node(
            old_node.tag(),
            path.clone(),
            new_node,
        )];
    }

    let mut patches = vec![];

    // The following comparison can only contain identical variants, other
    // cases have already been handled above by comparing variant
    // discriminants.
    match (old_node, new_node) {
        (Node::Leaf(old_leaf), Node::Leaf(new_leaf)) => {
            if old_leaf != new_leaf {
                let ct =
                    Patch::replace_node(old_node.tag(), path.clone(), new_node);
                patches.push(ct);
            }
        }
        // We're comparing two element nodes
        (Node::Element(old_element), Node::Element(new_element)) => {
            let diff_as_keyed = is_any_children_keyed(old_element, key)
                || is_any_children_keyed(new_element, key);

            if diff_as_keyed {
                let keyed_patches = keyed::diff_keyed_elements(
                    old_element,
                    new_element,
                    key,
                    path,
                    skip,
                    rep,
                );
                patches.extend(keyed_patches);
            } else {
                let non_keyed_patches = diff_non_keyed_elements(
                    old_element,
                    new_element,
                    key,
                    path,
                    skip,
                    rep,
                );
                patches.extend(non_keyed_patches);
            }
        }
        _ => {
            unreachable!("Unequal variant discriminants should already have been handled");
        }
    };

    patches
}

/// In diffing non_keyed elements,
///  we reuse existing DOM elements as much as possible
///
///  The algorithm used here is very simple.
///
///  If there are more children in the old_element than the new_element
///  the excess children is all removed.
///
///  If there are more children in the new_element than the old_element
///  it will be all appended in the old_element.
///
///
fn diff_non_keyed_elements<'a, 'b, NS, TAG, LEAF, ATT, VAL, SKIP, REP>(
    old_element: &'a Element<NS, TAG, LEAF, ATT, VAL>,
    new_element: &'a Element<NS, TAG, LEAF, ATT, VAL>,
    key: &ATT,
    path: &TreePath,
    skip: &SKIP,
    rep: &REP,
) -> Vec<Patch<'a, NS, TAG, LEAF, ATT, VAL>>
where
    NS: PartialEq + Clone + Debug,
    LEAF: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,
    SKIP: Fn(
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
    ) -> bool,
    REP: Fn(
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
        &'a Node<NS, TAG, LEAF, ATT, VAL>,
    ) -> bool,
{
    let mut patches = vec![];
    let attributes_patches =
        create_attribute_patches(old_element, new_element, path);
    patches.extend(attributes_patches);

    let old_child_count = old_element.children.len();
    let new_child_count = new_element.children.len();

    let min_count = cmp::min(old_child_count, new_child_count);
    for index in 0..min_count {
        // if we iterate trough the old elements, a new child_path is created for that iteration
        let child_path = path.traverse(index);

        let old_child = &old_element
            .children
            .get(index)
            .expect("No old_node child node");
        let new_child =
            &new_element.children.get(index).expect("No new child node");

        let more_patches =
            diff_recursive(old_child, new_child, &child_path, key, skip, rep);
        patches.extend(more_patches);
    }

    // If there are more new child than old_node child, we make a patch to append the excess element
    // starting from old_child_count to the last item of the new_elements
    if new_child_count > old_child_count {
        patches.push(Patch::append_children(
            &old_element.tag,
            path.clone(),
            new_element.children.iter().skip(old_child_count).collect(),
        ));
    }

    if new_child_count < old_child_count {
        let remove_node_patches = old_element
            .children
            .iter()
            .skip(new_child_count)
            .enumerate()
            .map(|(i, old_child)| {
                Patch::remove_node(
                    old_child.tag(),
                    path.traverse(new_child_count + i),
                )
            })
            .collect::<Vec<_>>();

        patches.extend(remove_node_patches);
    }

    patches
}

///
/// Note: The performance bottlenecks
///     - allocating new vec
///     - merging attributes of the same name
fn create_attribute_patches<'a, NS, TAG, LEAF, ATT, VAL>(
    old_element: &'a Element<NS, TAG, LEAF, ATT, VAL>,
    new_element: &'a Element<NS, TAG, LEAF, ATT, VAL>,
    path: &TreePath,
) -> Vec<Patch<'a, NS, TAG, LEAF, ATT, VAL>>
where
    NS: PartialEq + Clone + Debug,
    LEAF: PartialEq + Clone + Debug,
    TAG: PartialEq + Debug,
    ATT: PartialEq + Clone + Debug,
    VAL: PartialEq + Clone + Debug,
{
    let mut patches = vec![];
    let mut add_attributes: Vec<&Attribute<NS, ATT, VAL>> = vec![];
    let mut remove_attributes: Vec<&Attribute<NS, ATT, VAL>> = vec![];

    let new_attributes_grouped =
        group_attributes_per_name(new_element.get_attributes());
    let old_attributes_grouped =
        group_attributes_per_name(old_element.get_attributes());

    // for all new elements that doesn't exist in the old elements
    // or the values differ
    // add it to the AddAttribute patches
    for (new_attr_name, new_attrs) in new_attributes_grouped.iter() {
        let old_attr_values = old_attributes_grouped
            .iter()
            .find(|(att_name, _)| att_name == new_attr_name)
            .map(|(_, attrs)| {
                attrs.iter().map(|attr| &attr.value).collect::<Vec<_>>()
            });

        let new_attr_values = new_attributes_grouped
            .iter()
            .find(|(att_name, _)| att_name == new_attr_name)
            .map(|(_, attrs)| {
                attrs.iter().map(|attr| &attr.value).collect::<Vec<_>>()
            });

        if let Some(old_attr_values) = old_attr_values {
            let new_attr_values =
                new_attr_values.expect("must have new attr values");
            if old_attr_values != new_attr_values {
                add_attributes.extend(new_attrs);
            }
        } else {
            add_attributes.extend(new_attrs);
        }
    }

    // if this attribute name does not exist anymore
    // to the new element, remove it
    for (old_attr_name, old_attrs) in old_attributes_grouped.iter() {
        if let Some(_pre_attr) = new_attributes_grouped
            .iter()
            .find(|(new_attr_name, _)| new_attr_name == old_attr_name)
        {
            //
        } else {
            remove_attributes.extend(old_attrs);
        }
    }

    if !add_attributes.is_empty() {
        patches.push(Patch::add_attributes(
            &old_element.tag,
            path.clone(),
            add_attributes,
        ));
    }
    if !remove_attributes.is_empty() {
        patches.push(Patch::remove_attributes(
            &old_element.tag,
            path.clone(),
            remove_attributes,
        ));
    }
    patches
}