1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//! Helper functions for working with static keys.
use crate::{
    constants::{PATTERN, PEM_PATTERN, PEM_PRIVATE, PEM_PUBLIC},
    snow::Keypair,
    Error, Result,
};
use pem::Pem;

/// Generate a keypair for the noise protocol using the
/// standard pattern.
pub fn generate_keypair() -> Result<Keypair> {
    let builder = snow::Builder::new(PATTERN.parse()?);
    Ok(builder.generate_keypair()?)
}

/// Encode a keypair into a PEM-encoded string.
pub fn encode_keypair(keypair: &Keypair) -> String {
    let pattern_pem = Pem::new(PEM_PATTERN, PATTERN.as_bytes());
    let public_pem = Pem::new(PEM_PUBLIC, keypair.public.clone());
    let private_pem = Pem::new(PEM_PRIVATE, keypair.private.clone());
    pem::encode_many(&[pattern_pem, public_pem, private_pem])
}

/// Decode from a PEM-encoded string into a keypair.
pub fn decode_keypair(keypair: impl AsRef<[u8]>) -> Result<Keypair> {
    let mut pems = pem::parse_many(keypair)?;
    if pems.len() == 3 {
        let (first, second, third) =
            (pems.remove(0), pems.remove(0), pems.remove(0));
        if (PEM_PATTERN, PEM_PUBLIC, PEM_PRIVATE)
            == (first.tag(), second.tag(), third.tag())
        {
            if &first.into_contents() != PATTERN.as_bytes() {
                return Err(Error::PatternMismatch(PATTERN.to_string()));
            }
            Ok(Keypair {
                public: second.into_contents(),
                private: third.into_contents(),
            })
        } else {
            Err(Error::BadKeypairPem)
        }
    } else {
        Err(Error::BadKeypairPem)
    }
}

#[cfg(test)]
mod tests {
    use super::{decode_keypair, encode_keypair, generate_keypair};
    use crate::{PATTERN, TAGLEN, Error, PEM_PATTERN, PEM_PUBLIC, PEM_PRIVATE};
    use anyhow::Result;
    use pem::Pem;

    #[test]
    fn encode_decode_keypair() -> Result<()> {
        let keypair = generate_keypair()?;
        let pem = encode_keypair(&keypair);
        let decoded = decode_keypair(&pem)?;
        assert_eq!(keypair.public, decoded.public);
        assert_eq!(keypair.private, decoded.private);
        Ok(())
    }

    #[test]
    fn decode_keypair_wrong_length() -> Result<()> {
        let public_pem = Pem::new("INVALID TAG", vec![0; 32]);
        let pem = pem::encode_many(&[public_pem]);
        let result = decode_keypair(&pem);
        assert!(matches!(result, Err(Error::BadKeypairPem)));
        Ok(())
    }

    #[test]
    fn decode_keypair_wrong_order() -> Result<()> {
        let pattern_pem = Pem::new(PEM_PATTERN, vec![0; 32]);
        let public_pem = Pem::new(PEM_PUBLIC, vec![0; 32]);
        let private_pem = Pem::new(PEM_PRIVATE, vec![0; 32]);
        let pem = pem::encode_many(&[pattern_pem, private_pem, public_pem]);
        let result = decode_keypair(&pem);
        assert!(matches!(result, Err(Error::BadKeypairPem)));
        Ok(())
    }

    #[test]
    fn decode_keypair_pattern_mismatch() -> Result<()> {
        let pattern_pem = Pem::new(PEM_PATTERN, vec![0; 32]);
        let public_pem = Pem::new(PEM_PUBLIC, vec![0; 32]);
        let private_pem = Pem::new(PEM_PRIVATE, vec![0; 32]);
        let pem = pem::encode_many(&[pattern_pem, public_pem, private_pem]);
        let result = decode_keypair(&pem);
        assert!(matches!(result, Err(Error::PatternMismatch(_))));
        Ok(())
    }

    #[test]
    fn noise_transport_encrypt_decrypt() -> Result<()> {
        let builder_1 = snow::Builder::new(PATTERN.parse()?);
        let builder_2 = snow::Builder::new(PATTERN.parse()?);

        let keypair1 = builder_1.generate_keypair()?;
        let keypair2 = builder_2.generate_keypair()?;

        let mut initiator = builder_1
            .local_private_key(&keypair1.private)
            .remote_public_key(&keypair2.public)
            .build_initiator()?;

        let mut responder = builder_2
            .local_private_key(&keypair2.private)
            .remote_public_key(&keypair1.public)
            .build_responder()?;

        let (mut read_buf, mut first_msg, mut second_msg) =
            ([0u8; 1024], [0u8; 1024], [0u8; 1024]);

        // -> e
        let len = initiator.write_message(&[], &mut first_msg)?;

        // responder processes the first message...
        responder.read_message(&first_msg[..len], &mut read_buf)?;

        // <- e, ee
        let len = responder.write_message(&[], &mut second_msg)?;

        // initiator processes the response...
        initiator.read_message(&second_msg[..len], &mut read_buf)?;

        // NN handshake complete, transition into transport mode.
        let mut initiator = initiator.into_transport_mode()?;
        let mut responder = responder.into_transport_mode()?;

        let data = "this is the message that is sent out";
        let payload = data.as_bytes();

        let mut message = vec![0; payload.len() + TAGLEN];
        let len = initiator.write_message(&payload, &mut message)?;

        let payload = message;
        let mut message = vec![0; len];
        responder.read_message(&payload[..len], &mut message)?;

        let new_length = len - TAGLEN;
        message.truncate(new_length);

        let decoded = std::str::from_utf8(&message)?;
        assert_eq!(data, decoded);

        Ok(())
    }
}