1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//! Helper functions for working with static keys.
use crate::{
    constants::{PATTERN, PEM_PATTERN, PEM_PRIVATE, PEM_PUBLIC},
    snow::params::NoiseParams,
    Error, Result,
};
use pem::Pem;
use serde::{
    de::{self, Deserializer, Visitor},
    ser::Serializer,
    Deserialize, Serialize,
};
use std::fmt;

/// Key pair used by the noise protocol.
pub struct Keypair {
    inner: snow::Keypair,
}

impl Keypair {
    /// Generate a new keypair.
    pub fn new(params: NoiseParams) -> Result<Self> {
        let builder = snow::Builder::new(params);
        Ok(Self {
            inner: builder.generate_keypair()?,
        })
    }

    /// Public key.
    pub fn public_key(&self) -> &[u8] {
        &self.inner.public
    }

    /// Private key.
    pub fn private_key(&self) -> &[u8] {
        &self.inner.private
    }
}

impl Clone for Keypair {
    fn clone(&self) -> Self {
        Keypair {
            inner: snow::Keypair {
                public: self.inner.public.clone(),
                private: self.inner.private.clone(),
            },
        }
    }
}

impl Serialize for Keypair {
    fn serialize<S>(
        &self,
        serializer: S,
    ) -> std::result::Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let encoded = encode_keypair(self);
        serializer.serialize_str(&encoded)
    }
}

impl<'de> Deserialize<'de> for Keypair {
    fn deserialize<D>(
        deserializer: D,
    ) -> std::result::Result<Keypair, D::Error>
    where
        D: Deserializer<'de>,
    {
        deserializer.deserialize_str(KeypairVisitor)
    }
}

struct KeypairVisitor;

impl<'de> Visitor<'de> for KeypairVisitor {
    type Value = Keypair;

    fn expecting(
        &self,
        formatter: &mut fmt::Formatter,
    ) -> fmt::Result {
        formatter.write_str("PEM encoded keypair")
    }

    fn visit_str<E>(
        self,
        value: &str,
    ) -> std::result::Result<Self::Value, E>
    where
        E: de::Error,
    {
        let decoded = decode_keypair(value.as_bytes())
            .map_err(de::Error::custom)?;
        Ok(decoded)
    }
}

/// Generate a keypair for the noise protocol using the
/// standard pattern.
pub fn generate_keypair() -> Result<Keypair> {
    Keypair::new(PATTERN.parse()?)
}

/// Encode a keypair into a PEM-encoded string.
pub fn encode_keypair(keypair: &Keypair) -> String {
    let pattern_pem = Pem::new(PEM_PATTERN, PATTERN.as_bytes());
    let public_pem =
        Pem::new(PEM_PUBLIC, keypair.public_key().to_vec());
    let private_pem =
        Pem::new(PEM_PRIVATE, keypair.private_key().to_vec());
    pem::encode_many(&[pattern_pem, public_pem, private_pem])
}

/// Decode from a PEM-encoded string into a keypair.
pub fn decode_keypair(keypair: impl AsRef<[u8]>) -> Result<Keypair> {
    let mut pems = pem::parse_many(keypair)?;
    if pems.len() == 3 {
        let (first, second, third) =
            (pems.remove(0), pems.remove(0), pems.remove(0));
        if (PEM_PATTERN, PEM_PUBLIC, PEM_PRIVATE)
            == (first.tag(), second.tag(), third.tag())
        {
            if first.into_contents() != PATTERN.as_bytes() {
                return Err(Error::PatternMismatch(
                    PATTERN.to_string(),
                ));
            }

            Ok(Keypair {
                inner: snow::Keypair {
                    public: second.into_contents(),
                    private: third.into_contents(),
                },
            })
        } else {
            Err(Error::BadKeypairPem)
        }
    } else {
        Err(Error::BadKeypairPem)
    }
}

#[cfg(test)]
mod tests {
    use super::{decode_keypair, encode_keypair, generate_keypair};
    use crate::{
        Error, PATTERN, PEM_PATTERN, PEM_PRIVATE, PEM_PUBLIC, TAGLEN,
    };
    use anyhow::Result;
    use pem::Pem;

    #[test]
    fn encode_decode_keypair() -> Result<()> {
        let keypair = generate_keypair()?;
        let pem = encode_keypair(&keypair);
        let decoded = decode_keypair(&pem)?;
        assert_eq!(keypair.public_key(), decoded.public_key());
        assert_eq!(keypair.private_key(), decoded.private_key());
        Ok(())
    }

    #[test]
    fn decode_keypair_wrong_length() -> Result<()> {
        let public_pem = Pem::new("INVALID TAG", vec![0; 32]);
        let pem = pem::encode_many(&[public_pem]);
        let result = decode_keypair(&pem);
        assert!(matches!(result, Err(Error::BadKeypairPem)));
        Ok(())
    }

    #[test]
    fn decode_keypair_wrong_order() -> Result<()> {
        let pattern_pem = Pem::new(PEM_PATTERN, vec![0; 32]);
        let public_pem = Pem::new(PEM_PUBLIC, vec![0; 32]);
        let private_pem = Pem::new(PEM_PRIVATE, vec![0; 32]);
        let pem =
            pem::encode_many(&[pattern_pem, private_pem, public_pem]);
        let result = decode_keypair(&pem);
        assert!(matches!(result, Err(Error::BadKeypairPem)));
        Ok(())
    }

    #[test]
    fn decode_keypair_pattern_mismatch() -> Result<()> {
        let pattern_pem = Pem::new(PEM_PATTERN, vec![0; 32]);
        let public_pem = Pem::new(PEM_PUBLIC, vec![0; 32]);
        let private_pem = Pem::new(PEM_PRIVATE, vec![0; 32]);
        let pem =
            pem::encode_many(&[pattern_pem, public_pem, private_pem]);
        let result = decode_keypair(&pem);
        assert!(matches!(result, Err(Error::PatternMismatch(_))));
        Ok(())
    }

    #[test]
    fn noise_transport_encrypt_decrypt() -> Result<()> {
        let builder_1 = snow::Builder::new(PATTERN.parse()?);
        let builder_2 = snow::Builder::new(PATTERN.parse()?);

        let keypair1 = builder_1.generate_keypair()?;
        let keypair2 = builder_2.generate_keypair()?;

        let mut initiator = builder_1
            .local_private_key(&keypair1.private)
            .remote_public_key(&keypair2.public)
            .build_initiator()?;

        let mut responder = builder_2
            .local_private_key(&keypair2.private)
            .remote_public_key(&keypair1.public)
            .build_responder()?;

        let (mut read_buf, mut first_msg, mut second_msg) =
            ([0u8; 1024], [0u8; 1024], [0u8; 1024]);

        // -> e
        let len = initiator.write_message(&[], &mut first_msg)?;

        // responder processes the first message...
        responder.read_message(&first_msg[..len], &mut read_buf)?;

        // <- e, ee
        let len = responder.write_message(&[], &mut second_msg)?;

        // initiator processes the response...
        initiator.read_message(&second_msg[..len], &mut read_buf)?;

        // NN handshake complete, transition into transport mode.
        let mut initiator = initiator.into_transport_mode()?;
        let mut responder = responder.into_transport_mode()?;

        let data = "this is the message that is sent out";
        let payload = data.as_bytes();

        let mut message = vec![0; payload.len() + TAGLEN];
        let len = initiator.write_message(&payload, &mut message)?;

        let payload = message;
        let mut message = vec![0; len];
        responder.read_message(&payload[..len], &mut message)?;

        let new_length = len - TAGLEN;
        message.truncate(new_length);

        let decoded = std::str::from_utf8(&message)?;
        assert_eq!(data, decoded);

        Ok(())
    }
}