1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
extern crate core as std;

use std::fmt;
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::ops::{Deref, DerefMut};
use std::ptr;

/// Controls in which cases the associated code should be run
pub trait Strategy {
    /// Return `true` if the guard’s associated code should run
    /// (in the context where this method is called).
    fn should_run() -> bool;
}

/// Always run on scope exit.
///
/// “Always” run: on regular exit from a scope or on unwinding from a panic.
/// Can not run on abort, process exit, and other catastrophic events where
/// destructors don’t run.
#[derive(Debug)]
pub enum Always {}

impl Strategy for Always {
    #[inline(always)]
    fn should_run() -> bool {
        true
    }
}

/// Macro to create a `ScopeGuard` (always run).
///
/// The macro takes statements, which are the body of a closure
/// that will run when the scope is exited.
#[macro_export]
macro_rules! defer {
    ($($t:tt)*) => {
        let _guard = $crate::external::scopeguard::guard((), |()| { $($t)* });
    };
}

pub(crate) use defer;

/// `ScopeGuard` is a scope guard that may own a protected value.
///
/// If you place a guard in a local variable, the closure can
/// run regardless how you leave the scope — through regular return or panic
/// (except if panic or other code aborts; so as long as destructors run).
/// It is run only once.
///
/// The `S` parameter for [`Strategy`](trait.Strategy.html) determines if
/// the closure actually runs.
///
/// The guard's closure will be called with the held value in the destructor.
///
/// The `ScopeGuard` implements `Deref` so that you can access the inner value.
pub struct ScopeGuard<T, F, S = Always>
where
    F: FnOnce(T),
    S: Strategy,
{
    value: ManuallyDrop<T>,
    dropfn: ManuallyDrop<F>,
    // fn(S) -> S is used, so that the S is not taken into account for auto traits.
    strategy: PhantomData<fn(S) -> S>,
}

impl<T, F, S> ScopeGuard<T, F, S>
where
    F: FnOnce(T),
    S: Strategy,
{
    /// Create a `ScopeGuard` that owns `v` (accessible through deref) and calls
    /// `dropfn` when its destructor runs.
    ///
    /// The `Strategy` decides whether the scope guard's closure should run.
    #[inline]
    #[must_use]
    pub fn with_strategy(v: T, dropfn: F) -> ScopeGuard<T, F, S> {
        ScopeGuard {
            value: ManuallyDrop::new(v),
            dropfn: ManuallyDrop::new(dropfn),
            strategy: PhantomData,
        }
    }

    /// “Defuse” the guard and extract the value without calling the closure.
    ///
    /// ```
    /// extern crate scopeguard;
    ///
    /// use scopeguard::{guard, ScopeGuard};
    ///
    /// fn conditional() -> bool { true }
    ///
    /// fn main() {
    ///     let mut guard = guard(Vec::new(), |mut v| v.clear());
    ///     guard.push(1);
    ///
    ///     if conditional() {
    ///         // a condition maybe makes us decide to
    ///         // “defuse” the guard and get back its inner parts
    ///         let value = ScopeGuard::into_inner(guard);
    ///     } else {
    ///         // guard still exists in this branch
    ///     }
    /// }
    /// ```
    #[inline]
    #[allow(unused)]
    pub fn into_inner(guard: Self) -> T {
        // Cannot move out of `Drop`-implementing types,
        // so `ptr::read` the value and forget the guard.
        let mut guard = ManuallyDrop::new(guard);
        unsafe {
            let value = ptr::read(&*guard.value);
            // Drop the closure after `value` has been read, so that if the
            // closure's `drop` function panics, unwinding still tries to drop
            // `value`.
            ManuallyDrop::drop(&mut guard.dropfn);
            value
        }
    }
}

/// Create a new `ScopeGuard` owning `v` and with deferred closure `dropfn`.
#[inline]
#[must_use]
pub fn guard<T, F>(v: T, dropfn: F) -> ScopeGuard<T, F, Always>
where
    F: FnOnce(T),
{
    ScopeGuard::with_strategy(v, dropfn)
}

// ScopeGuard can be Sync even if F isn't because the closure is
// not accessible from references.
// The guard does not store any instance of S, so it is also irrelevant.
unsafe impl<T, F, S> Sync for ScopeGuard<T, F, S>
where
    T: Sync,
    F: FnOnce(T),
    S: Strategy,
{
}

impl<T, F, S> Deref for ScopeGuard<T, F, S>
where
    F: FnOnce(T),
    S: Strategy,
{
    type Target = T;

    fn deref(&self) -> &T {
        &*self.value
    }
}

impl<T, F, S> DerefMut for ScopeGuard<T, F, S>
where
    F: FnOnce(T),
    S: Strategy,
{
    fn deref_mut(&mut self) -> &mut T {
        &mut *self.value
    }
}

impl<T, F, S> Drop for ScopeGuard<T, F, S>
where
    F: FnOnce(T),
    S: Strategy,
{
    fn drop(&mut self) {
        // This is OK because the fields are `ManuallyDrop`s
        // which will not be dropped by the compiler.
        let (value, dropfn) = unsafe { (ptr::read(&*self.value), ptr::read(&*self.dropfn)) };
        if S::should_run() {
            dropfn(value);
        }
    }
}

impl<T, F, S> fmt::Debug for ScopeGuard<T, F, S>
where
    T: fmt::Debug,
    F: FnOnce(T),
    S: Strategy,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct(stringify!(ScopeGuard))
            .field("value", &*self.value)
            .finish()
    }
}