1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// copyright 2022 mikael lund aka wombat
// 
// licensed under the apache license, version 2.0 (the "license");
// you may not use this file except in compliance with the license.
// you may obtain a copy of the license at
// 
//     http://www.apache.org/licenses/license-2.0
// 
// unless required by applicable law or agreed to in writing, software
// distributed under the license is distributed on an "as is" basis,
// without warranties or conditions of any kind, either express or implied.
// see the license for the specific language governing permissions and
// limitations under the license.

//! This crate contains hardware register tables and support functions for
//! 8-bit retro computers like the Commodore 64, MEGA65 and others.
//! Please check the `examples/` directory to see how Rust can be
//! used generate demo effects.
//!
//! # Examples
//! 
//! Read and write to labelled hardware registers:
//! ~~~
//! use mos_hardware::{c64,vic2};
//! 
//! let old_border_color = (*c64::VIC).border_color.read();
//! (*c64::VIC).border_color.write(vic2::LIGHT_RED);
//! (*c64::SID).potentiometer_x.write(3); // error: read-only register
//! ~~~
//! 
//! Use bitflags to control hardware behaviour, _e.g._ where the VIC-II chip accesses
//! screen memory and character sets:
//! ~~~
//! let bank = vic2::ScreenBank::AT_2C00.bits() | vic2::ScreenBank::AT_2000.bits();
//! (*c64::VIC).screen_and_charset_bank.write(bank);
//! ~~~
//! 
//! Convenience functions to perform hardware-specific tasks, _e.g._ generate random numbers
//! using noise from the C64's SID chip:
//! ~~~
//! (*c64::SID).start_random_generator();
//! let random_number : u8 = rand8!(c64::SID);
//! ~~~

#![no_std]
#![feature(const_option)]

extern crate static_assertions;

pub mod cia;
pub mod sid;
pub mod vic2;
pub mod c64;
pub mod mega65;

use core::iter::Iterator;


/// Peek into memory (read)
///
/// Example:
/// ~~~
/// let value = peek!(0xC000 as *mut u8);
/// ~~~
#[macro_export]
macro_rules! peek {
    ($address:expr) => {{
        core::ptr::read_volatile($address)
    }};
}

/// Poke into memory (read)
///
/// Example:
/// ~~~
/// poke!(0xD020 as *mut u8, vic2::LIGHT_GREEN);
/// ~~~
#[macro_export]
macro_rules! poke {
    ($address:expr, $value:expr) => {{
        core::ptr::write_volatile($address, $value)
    }};
}

/// Add two integers using wrapping
#[macro_export]
macro_rules! add {
    ($value1:expr, $value2:expr) => {{
        $value1.wrapping_add($value2)
    }};
}

/// Subtract two integers using wrapping
#[macro_export]
macro_rules! sub {
    ($value1:expr, $value2:expr) => {{
        $value1.wrapping_sub($value2)
    }};
}

/// Get high byte from a 16-bit integer using pointer arithmetic
///
/// Example:
/// ~~~
/// let high = highbyte(0xABCD);
/// let low = lowbyte(0xABCD);
/// assert_eq!(high, 0xAB);
/// assert_eq!(low, 0xCD);
/// ~~~
#[macro_export]
macro_rules! highbyte {
    ($word:expr) => {{
        ((&$word as *const u16) as *const u8).offset(1).read_volatile()
        // Can also be done using bit-shifting: ($word >> 8) as u8
    }};
}

/// Get low byte from a 16-bit integer using pointer arithmetic
///
/// Example:
/// ~~~
/// let word = 0xABCD;
/// assert_eq!(highbyte!(word), 0xAB);
/// assert_eq!(lowbyte!(word), 0xCD);
/// ~~~
#[macro_export]
macro_rules! lowbyte {
    ($word:expr) => {{
        ((&$word as *const u16) as *const u8).offset(0).read_volatile()
        // Can also be done using bit-shifting: ($word & 0xff) as u8
    }};
}

/// Repeat each element n times
///
/// See more [here](https://stackoverflow.com/questions/66482699/how-to-repeat-each-element-of-iterator-n-times).
pub fn repeat_element<T: Clone>(
    it: impl Iterator<Item = T>,
    cnt: usize,
) -> impl Iterator<Item = T> {
    it.flat_map(move |n| core::iter::repeat(n).take(cnt))
}