1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
use std::rc::Rc;

use crate::error;
use crate::error::Error;
use crate::accumulate::accumulate;
use crate::utils::extract_value_from_result_vec;


#[allow(dead_code)]
pub struct DivideInner<T> {
    pub(crate) buf: Vec<T>,
    pub(crate) n: usize,
    len_vec: Vec<usize>,
    accumulate_overflow: bool
}

pub struct Divide<T> {
    pub(crate) inner: Rc<DivideInner<T>>
}

impl<T> Divide<T> 
where
T: Clone
{
    pub fn new(buf: Vec<T>, bucket_count: usize) -> Divide<T> {
        let mut _len_vec = Vec::new();
        let base = buf.len() / bucket_count;
        let _mod = buf.len() % bucket_count;

        for _ in 0..bucket_count {
            _len_vec.push(base);
        }
        for i in 0.._mod {
            _len_vec[i] = _len_vec[i] + 1;
        }


        let mut accumulate_overflow = false; 
        let a = accumulate(_len_vec);
        let mut _len_vec3 = extract_value_from_result_vec(a.collect::<Vec<_>>());
        println!("{:?}", _len_vec3);
        if _len_vec3.1 {
            accumulate_overflow = true;
        }

        let mut _len_vec2 = Vec::new();
        _len_vec2.push(0 as usize);
        _len_vec2.append(&mut _len_vec3.0);


        let inner = DivideInner {
            buf: buf,
            n: bucket_count,
            len_vec: _len_vec2,
            accumulate_overflow: accumulate_overflow
        };

        let ret = Divide {
            inner: Rc::new(inner)
        };

        return ret;
    }

    pub fn iter_cnt(&self) -> usize {
        return self.inner.n;
    }

    pub fn iter(&self, bucket_no: usize) -> Cursor<T> {
        assert!(bucket_no < self.inner.len_vec.len() - 1);
        let start = self.inner.len_vec[bucket_no];
        let end = self.inner.len_vec[bucket_no+1];

        let ret = Cursor {
            inner: Rc::clone(&self.inner),
            cur: start,
            end: end,
            bucket_count: self.inner.n,
            accumulate_overflow: self.inner.accumulate_overflow
        };

        return ret;
    }
}

pub fn divide<T>(buf: Vec<T>, bucket_cnt: usize) -> Divide<T>
where
T: Clone
{
    return Divide::new(buf, bucket_cnt);
}

pub struct Cursor<T>
{
    inner: Rc<DivideInner<T>>,
    cur: usize,
    end: usize,
    bucket_count: usize,
    accumulate_overflow: bool
}

impl<T> Iterator for Cursor<T>
where
T: Clone
{
    type Item = Result<T, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.bucket_count == 0 {
            return Some(Err(error::value_error("bucket count should not be 0".to_string())));
        }

        if self.accumulate_overflow {
            return Some(Err(error::value_error("accumulate overflow".to_string())));
        }

        if self.cur >= self.end {
            return None;
        }

        let real_ret: Option<Result<_, _>> = Some(Ok(self.inner.buf.get(self.cur).unwrap().clone()));

        self.cur += 1;

        return real_ret;
    }
}

impl<T> Drop for Cursor<T> {
    fn drop(&mut self) {
        println!("Cursor, refcnt={}", Rc::strong_count(&self.inner));
    }
}
impl<T> Drop for Divide<T> {
    fn drop(&mut self) {
        println!("Divide, refcnt={}", Rc::strong_count(&self.inner));
    }
}


#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test1() {
        let v = vec![1,2,3,4,5,6,7,8,9,10];
        let dist = divide(v, 3);

        let mut cur_0 = dist.iter(0);
        assert_eq!(1, cur_0.next().unwrap().ok().unwrap());
        assert_eq!(2, cur_0.next().unwrap().ok().unwrap());
        assert_eq!(3, cur_0.next().unwrap().ok().unwrap());
        assert_eq!(4, cur_0.next().unwrap().ok().unwrap());
        assert_eq!(None, cur_0.next());


        let mut cur_1 = dist.iter(1);
        assert_eq!(5, cur_1.next().unwrap().ok().unwrap());
        assert_eq!(6, cur_1.next().unwrap().ok().unwrap());
        assert_eq!(7, cur_1.next().unwrap().ok().unwrap());
        assert_eq!(None, cur_0.next());

        let mut cur_2 = dist.iter(2);
        assert_eq!(8, cur_2.next().unwrap().ok().unwrap());
        assert_eq!(9, cur_2.next().unwrap().ok().unwrap());
        assert_eq!(10, cur_2.next().unwrap().ok().unwrap());
        assert_eq!(None, cur_2.next());
    }

    #[test]
    fn test2() {
        let v = vec![1,2,3,4,5,6,7,8,9,10];
        let dist = divide(v, 3);

        let mut cur_0 = dist.iter(0);
        println!("{:?}", cur_0.next());
    }
}