1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use crate::id::IdLike;
use crate::methods::{EvictSet, ViewSet};

use std::collections::BTreeSet;
use std::collections::BTreeMap;
use std::collections::btree_set;
use std::collections::btree_map;
use std::ops::RangeBounds;

pub(crate) struct ToMany<K, V> {
    keys: BTreeMap<K, Metadata>,
    elements: BTreeSet<(K, V)>,
}

pub(crate) struct Metadata {
    count: usize,
}


impl<K: IdLike, V: IdLike> ToMany<K, V> {
    pub fn iter<'a>(&'a self) -> impl 'a+DoubleEndedIterator<Item=(K, V)> { 
        self.elements.iter().map(|(k, v)| (*k, *v))
    }

    pub fn keys<'a>(&'a self) -> impl 'a+DoubleEndedIterator<Item=K> { 
        self.keys.iter().map(|(k, _)| *k) 
    }

    pub(crate) fn sets<'a>(&'a self) -> impl 'a+DoubleEndedIterator<Item=(K, VSet<'a, K, V>)> { 
        self.keys.iter().map(move |(k, _)| (*k, self.get(*k)))
    }
}

impl<'a, K: IdLike, V: IdLike> ToMany<K, V> {
    pub fn new() -> Self { ToMany { 
        keys: BTreeMap::new(),
        elements: BTreeSet::new(), 
    } }

    pub fn insert(&mut self, key: K, value: V, _on_evict: impl FnOnce(K, V)) -> Option<V> { 
        let is_new = self.elements.insert((key, value));

        // no benefit to calling the _on_evict callback because the opposed data structure it updates will imemdiately re-add this key
        // however, to caller, pretend we evicted
        if is_new { 
            match self.keys.entry(key) {
                btree_map::Entry::Occupied(mut v) => { v.get_mut().count += 1; }
                btree_map::Entry::Vacant(v) => { v.insert(Metadata { count: 1 }); }
            };
            None 
        } else { 
            Some(value) 
        }
    }

    fn key_range(&self, key: K) -> btree_set::Range<'_, (K, V)> {
        if self.elements.is_empty() {
            // doesn't matter
            self.elements.range(..)
        } else { 
            self.elements.range((key, V::id_min_value())..=(key, V::id_max_value()))
        }
    }

    pub fn element_subrange(&self, k: impl RangeBounds<(K, V)>) -> btree_set::Range<'_, (K, V)> {
        self.elements.range(k)
    }

    pub fn key_subrange(&self, k: impl RangeBounds<K>) -> btree_map::Range<'_, K, Metadata> {
        self.keys.range(k)
    }

    pub fn expunge(&mut self, key: K, mut on_evict: impl FnMut(K, V)) -> BTreeSet<V> {
        let mut values = BTreeSet::new();
        for (_, v) in self.key_range(key) {
            values.insert(*v);
            on_evict(key, *v);
        }
        // TODO: Drain a range?
        for v in values.iter() {
            self.elements.remove(&(key, *v));
        }
        values
    }

    pub fn remove(&mut self, key: K, value: V, on_evict: impl FnOnce(K, V)) -> Option<V> {
        if self.elements.remove(&(key, value)) {
            match self.keys.entry(key) {
                btree_map::Entry::Occupied(mut o) => {
                    let om = o.get_mut();
                    if om.count > 1 {
                        om.count -= 1;
                    } else {
                        o.remove_entry();
                    }
                }
                btree_map::Entry::Vacant(_) => {}
            }
            if self.key_range(key).next().is_none() { self.keys.remove(&key); }
            on_evict(key, value);
            return Some(value);
        }
        None
    }

    pub fn get(&'a self, key: K) -> VSet<'a, K, V> { VSet { key, map: self } }
    pub fn get_mut(&'a mut self, key: K) -> MSet<'a, K, V> { MSet { key, map: self } }
    pub fn contains_key(&self, key: K) -> bool { self.keys.contains_key(&key) }

    pub fn len(&self) -> usize { self.elements.len() }
    pub fn keys_len(&self) -> usize { self.keys.len() }
}

#[derive(Clone, Copy)]
pub(crate) struct VSet<'a, K: IdLike, V: IdLike> {
    key: K,
    map: &'a ToMany<K, V>,
}

pub(crate) struct MSet<'a, K: IdLike, V: IdLike> {
    key: K, 
    map: &'a mut ToMany<K, V>
}

impl<'a, K: IdLike, V: IdLike> MSet<'a, K, V> {
    pub fn key(&self) -> K { self.key }
}

impl<'a, K: IdLike, V: IdLike> EvictSet<'a, K, V> for MSet<'a, K, V> {
    fn insert(&mut self, v: V, on_evict: impl FnOnce(K, V)) -> Option<V> { 
        self.map.insert(self.key, v, on_evict)
    }

    fn remove(&mut self, v: V, on_evict: impl FnOnce(K, V)) -> Option<V> { 
        self.map.remove(self.key, v, on_evict)
    }
}


impl<'a, K: IdLike, V: IdLike> ViewSet<'a, V> for VSet<'a, K, V> {
    type Iter = impl 'a+DoubleEndedIterator<Item=V>;

    fn contains(&self, v: V) -> bool {
        self.map.elements.contains(&(self.key, v))
    }

    fn len(&self) -> usize { 
        self.map.keys.get(&self.key).map_or(0, |f| f.count)
    }

    fn iter(&self) -> Self::Iter { 
        self.map.key_range(self.key).map(|(_, v)| *v)
    }
}

impl<'a, K: IdLike, V: IdLike> ViewSet<'a, V> for MSet<'a, K, V> {
    type Iter = impl DoubleEndedIterator<Item=V>;

    fn contains(&self, v: V) -> bool { 
        self.map.elements.contains(&(self.key, v))
    }

    fn len(&self) -> usize { 
        // TODO: This is a terrible implementation and should be done with a separate struct under keys
        self.map.key_range(self.key).count()
    }

    fn iter(&'a self) -> Self::Iter { 
        self.map.key_range(self.key).map(|(_, v)| *v)
    }
}

impl<'a, K: IdLike, V: IdLike+std::fmt::Debug> std::fmt::Debug for VSet<'a, K, V> {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> { 
        fmt.debug_set().entries(self.iter()).finish()
    }
}