1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
pub mod ast;
mod ast_tree_test;
mod parser_test;
mod precedences;

pub extern crate lexer;

use crate::ast::{
    Array, BinaryExpression, BlockStatement, Boolean, Expression, FunctionCall,
    FunctionDeclaration, Hash, Index, Integer, Let, Literal, Node, Program, ReturnStatement,
    Statement, StringType, UnaryExpression, IDENTIFIER, IF,
};
use crate::precedences::{get_token_precedence, Precedence};
use lexer::token::{Span, Token, TokenKind};
use lexer::Lexer;

type ParseError = String;
type ParseErrors = Vec<ParseError>;

pub struct Parser<'a> {
    lexer: Lexer<'a>,
    current_token: Token,
    peek_token: Token,
    errors: ParseErrors,
}

impl<'a> Parser<'a> {
    pub fn new(mut lexer: Lexer<'a>) -> Parser<'a> {
        let cur = lexer.next_token();
        let next = lexer.next_token();
        let errors = Vec::new();
        // in strict sense, rust can be as classic go pattern, but it requires more work
        // so let's just use pattern matching
        // ```rust
        // type PrefixParseFn = fn() -> Result<Expression, ParseError>;
        // type InfixParseFn = fn(Expression) -> Result<Expression, ParseError>;
        // let prefix_parse_fns = HashMap::new();
        // let infix_parse_fns = HashMap::new();
        // ```

        let p = Parser { lexer, current_token: cur, peek_token: next, errors };

        return p;
    }

    fn next_token(&mut self) {
        self.current_token = self.peek_token.clone();
        self.peek_token = self.lexer.next_token();
    }

    fn current_token_is(&mut self, token: &TokenKind) -> bool {
        self.current_token.kind == *token
    }

    fn peek_token_is(&mut self, token: &TokenKind) -> bool {
        self.peek_token.kind == *token
    }

    fn expect_peek(&mut self, token: &TokenKind) -> Result<(), ParseError> {
        self.next_token();
        if self.current_token.kind == *token {
            Ok(())
        } else {
            let e = format!("expected token: {} got: {}", token, self.current_token);
            Err(e)
        }
    }

    pub fn parse_program(&mut self) -> Result<Program, ParseErrors> {
        let mut program = Program::new();
        while !self.current_token_is(&TokenKind::EOF) {
            match self.parse_statement() {
                Ok(stmt) => program.body.push(stmt),
                Err(e) => self.errors.push(e),
            }
            self.next_token();
        }
        program.span.end = self.current_token.span.end;

        if self.errors.is_empty() {
            return Ok(program);
        } else {
            return Err(self.errors.clone());
        }
    }

    fn parse_statement(&mut self) -> Result<Statement, ParseError> {
        match self.current_token.kind {
            TokenKind::LET => self.parse_let_statement(),
            TokenKind::RETURN => self.parse_return_statement(),
            _ => self.parse_expression_statement(),
        }
    }

    fn parse_let_statement(&mut self) -> Result<Statement, ParseError> {
        let start = self.current_token.span.start;
        self.next_token();

        let name = self.current_token.clone();
        let mut identifier_name = "".to_string();
        match &self.current_token.kind {
            TokenKind::IDENTIFIER { name } => {
                identifier_name = name.to_string();
            }
            _ => return Err(format!("{} not an identifier", self.current_token)),
        };

        self.expect_peek(&TokenKind::ASSIGN)?;
        self.next_token();

        let mut value = self.parse_expression(Precedence::LOWEST)?.0;
        match value {
            Expression::FUNCTION(ref mut f) => {
                f.name = identifier_name;
            }
            _ => {}
        }

        if self.peek_token_is(&TokenKind::SEMICOLON) {
            self.next_token();
        }

        let end = self.current_token.span.end;

        return Ok(Statement::Let(Let {
            identifier: name,
            expr: value,
            span: Span { start, end },
        }));
    }

    fn parse_return_statement(&mut self) -> Result<Statement, ParseError> {
        let start = self.current_token.span.start;
        self.next_token();

        let value = self.parse_expression(Precedence::LOWEST)?.0;

        if self.peek_token_is(&TokenKind::SEMICOLON) {
            self.next_token();
        }
        let end = self.current_token.span.end;

        return Ok(Statement::Return(ReturnStatement {
            argument: value,
            span: Span { start, end },
        }));
    }

    fn parse_expression_statement(&mut self) -> Result<Statement, ParseError> {
        let expr = self.parse_expression(Precedence::LOWEST)?.0;
        if self.peek_token_is(&TokenKind::SEMICOLON) {
            self.next_token();
        }

        Ok(Statement::Expr(expr))
    }

    fn parse_expression(
        &mut self,
        precedence: Precedence,
    ) -> Result<(Expression, Span), ParseError> {
        let mut left_start = self.current_token.span.start;
        let mut left = self.parse_prefix_expression()?;
        while self.peek_token.kind != TokenKind::SEMICOLON
            && precedence < get_token_precedence(&self.peek_token.kind)
        {
            match self.parse_infix_expression(&left, left_start) {
                Some(infix) => {
                    left = infix?;
                    if let Expression::INFIX(b) = left.clone() {
                        left_start = b.span.start;
                    }
                }
                None => {
                    return Ok((left, Span { start: left_start, end: self.current_token.span.end }))
                }
            }
        }

        let end = self.current_token.span.end;

        Ok((left, Span { start: left_start, end }))
    }

    fn parse_prefix_expression(&mut self) -> Result<Expression, ParseError> {
        // this is prefix fn map :)
        match &self.current_token.kind {
            TokenKind::IDENTIFIER { name } => {
                return Ok(Expression::IDENTIFIER(IDENTIFIER {
                    name: name.clone(),
                    span: self.current_token.clone().span,
                }))
            }
            TokenKind::INT(i) => {
                return Ok(Expression::LITERAL(Literal::Integer(Integer {
                    raw: *i,
                    span: self.current_token.clone().span,
                })))
            }
            TokenKind::STRING(s) => {
                return Ok(Expression::LITERAL(Literal::String(StringType {
                    raw: s.to_string(),
                    span: self.current_token.clone().span,
                })))
            }
            b @ TokenKind::TRUE | b @ TokenKind::FALSE => {
                return Ok(Expression::LITERAL(Literal::Boolean(Boolean {
                    raw: *b == TokenKind::TRUE,
                    span: self.current_token.clone().span,
                })))
            }
            TokenKind::BANG | TokenKind::MINUS => {
                let start = self.current_token.span.start;
                let prefix_op = self.current_token.clone();
                self.next_token();
                let (expr, span) = self.parse_expression(Precedence::PREFIX)?;
                return Ok(Expression::PREFIX(UnaryExpression {
                    op: prefix_op,
                    operand: Box::new(expr),
                    span: Span { start, end: span.end },
                }));
            }
            TokenKind::LPAREN => {
                self.next_token();
                let expr = self.parse_expression(Precedence::LOWEST)?.0;
                self.expect_peek(&TokenKind::RPAREN)?;
                return Ok(expr);
            }
            TokenKind::IF => self.parse_if_expression(),
            TokenKind::FUNCTION => self.parse_fn_expression(),
            TokenKind::LBRACKET => {
                let (elements, span) = self.parse_expression_list(&TokenKind::RBRACKET)?;
                return Ok(Expression::LITERAL(Literal::Array(Array { elements, span })));
            }
            TokenKind::LBRACE => self.parse_hash_expression(),
            _ => Err(format!("no prefix function for token: {}", self.current_token)),
        }
    }

    fn parse_infix_expression(
        &mut self,
        left: &Expression,
        left_start: usize,
    ) -> Option<Result<Expression, ParseError>> {
        match self.peek_token.kind {
            TokenKind::PLUS
            | TokenKind::MINUS
            | TokenKind::ASTERISK
            | TokenKind::SLASH
            | TokenKind::EQ
            | TokenKind::NotEq
            | TokenKind::LT
            | TokenKind::GT => {
                self.next_token();
                let infix_op = self.current_token.clone();
                let precedence_value = get_token_precedence(&self.current_token.kind);
                self.next_token();
                let (right, span) = self.parse_expression(precedence_value).unwrap();
                return Some(Ok(Expression::INFIX(BinaryExpression {
                    op: infix_op,
                    left: Box::new(left.clone()),
                    right: Box::new(right),
                    span: Span { start: left_start, end: span.end },
                })));
            }
            TokenKind::LPAREN => {
                self.next_token();
                return Some(self.parse_fn_call_expression(left.clone()));
            }
            TokenKind::LBRACKET => {
                self.next_token();
                return Some(self.parse_index_expression(left.clone()));
            }
            _ => None,
        }
    }

    fn parse_if_expression(&mut self) -> Result<Expression, ParseError> {
        let start = self.current_token.span.start;
        self.expect_peek(&TokenKind::LPAREN)?;
        self.next_token();

        let condition = self.parse_expression(Precedence::LOWEST)?.0;
        self.expect_peek(&TokenKind::RPAREN)?;
        self.expect_peek(&TokenKind::LBRACE)?;

        let consequent = self.parse_block_statement()?;

        let alternate = if self.peek_token_is(&TokenKind::ELSE) {
            self.next_token();
            self.expect_peek(&TokenKind::LBRACE)?;
            Some(self.parse_block_statement()?)
        } else {
            None
        };

        let end = self.current_token.span.end;

        return Ok(Expression::IF(IF {
            condition: Box::new(condition),
            consequent,
            alternate,
            span: Span { start, end },
        }));
    }

    fn parse_block_statement(&mut self) -> Result<BlockStatement, ParseError> {
        let start = self.current_token.span.start;
        self.next_token();
        let mut block_statement = Vec::new();

        while !self.current_token_is(&TokenKind::RBRACE) && !self.current_token_is(&TokenKind::EOF)
        {
            if let Ok(statement) = self.parse_statement() {
                block_statement.push(statement)
            }

            self.next_token();
        }

        let end = self.current_token.span.end;

        Ok(BlockStatement { body: block_statement, span: Span { start, end } })
    }

    fn parse_fn_expression(&mut self) -> Result<Expression, ParseError> {
        let start = self.current_token.span.start;
        self.expect_peek(&TokenKind::LPAREN)?;

        let params = self.parse_fn_parameters()?;

        self.expect_peek(&TokenKind::LBRACE)?;

        let function_body = self.parse_block_statement()?;

        let end = self.current_token.span.end;

        Ok(Expression::FUNCTION(FunctionDeclaration {
            params,
            body: function_body,
            span: Span { start, end },
            name: "".to_string(),
        }))
    }

    fn parse_fn_parameters(&mut self) -> Result<Vec<IDENTIFIER>, ParseError> {
        let mut params = Vec::new();
        if self.peek_token_is(&TokenKind::RPAREN) {
            self.next_token();
            return Ok(params);
        }

        self.next_token();

        match &self.current_token.kind {
            TokenKind::IDENTIFIER { name } => params
                .push(IDENTIFIER { name: name.clone(), span: self.current_token.span.clone() }),
            token => {
                return Err(format!("expected function params  to be an identifier, got {}", token))
            }
        }

        while self.peek_token_is(&TokenKind::COMMA) {
            self.next_token();
            self.next_token();
            match &self.current_token.kind {
                TokenKind::IDENTIFIER { name } => params
                    .push(IDENTIFIER { name: name.clone(), span: self.current_token.span.clone() }),
                token => {
                    return Err(format!(
                        "expected function params  to be an identifier, got {}",
                        token
                    ))
                }
            }
        }

        self.expect_peek(&TokenKind::RPAREN)?;

        return Ok(params);
    }

    fn parse_fn_call_expression(&mut self, expr: Expression) -> Result<Expression, ParseError> {
        // fake positive
        #[allow(unused_assignments)]
        let mut start = self.current_token.span.start;
        let (arguments, ..) = self.parse_expression_list(&TokenKind::RPAREN)?;
        let end = self.current_token.span.end;
        match &expr {
            Expression::IDENTIFIER(i) => start = i.span.start,
            Expression::FUNCTION(f) => start = f.span.start,
            _ => return Err(format!("expected function")),
        }
        let callee = Box::new(expr);

        Ok(Expression::FunctionCall(FunctionCall { callee, arguments, span: Span { start, end } }))
    }

    fn parse_expression_list(
        &mut self,
        end: &TokenKind,
    ) -> Result<(Vec<Expression>, Span), ParseError> {
        let start = self.current_token.span.start;
        let mut expr_list = Vec::new();
        if self.peek_token_is(end) {
            self.next_token();
            let end = self.current_token.span.end;
            return Ok((expr_list, Span { start, end }));
        }

        self.next_token();

        expr_list.push(self.parse_expression(Precedence::LOWEST)?.0);

        while self.peek_token_is(&TokenKind::COMMA) {
            self.next_token();
            self.next_token();
            expr_list.push(self.parse_expression(Precedence::LOWEST)?.0);
        }

        self.expect_peek(end)?;
        let end = self.current_token.span.end;

        return Ok((expr_list, Span { start, end }));
    }

    fn parse_index_expression(&mut self, left: Expression) -> Result<Expression, ParseError> {
        let start = self.current_token.span.start;
        self.next_token();
        let index = self.parse_expression(Precedence::LOWEST)?.0;

        self.expect_peek(&TokenKind::RBRACKET)?;

        let end = self.current_token.span.end;

        return Ok(Expression::Index(Index {
            object: Box::new(left),
            index: Box::new(index),
            span: Span { start, end },
        }));
    }

    fn parse_hash_expression(&mut self) -> Result<Expression, ParseError> {
        let mut map = Vec::new();
        let start = self.current_token.span.start;
        while !self.peek_token_is(&TokenKind::RBRACE) {
            self.next_token();

            let key = self.parse_expression(Precedence::LOWEST)?.0;

            self.expect_peek(&TokenKind::COLON)?;

            self.next_token();
            let value = self.parse_expression(Precedence::LOWEST)?.0;

            map.push((key, value));

            if !self.peek_token_is(&TokenKind::RBRACE) {
                self.expect_peek(&TokenKind::COMMA)?;
            }
        }

        self.expect_peek(&TokenKind::RBRACE)?;
        let end = self.current_token.span.end;

        Ok(Expression::LITERAL(Literal::Hash(Hash { elements: map, span: Span { start, end } })))
    }
}

pub fn parse(input: &str) -> Result<Node, ParseErrors> {
    let lexer = Lexer::new(input);
    let mut parser = Parser::new(lexer);
    let program = parser.parse_program()?;

    Ok(Node::Program(program))
}

pub fn parse_ast_json_string(input: &str) -> Result<String, ParseErrors> {
    let ast = match parse(input) {
        Ok(node) => serde_json::to_string_pretty(&node).unwrap(),
        Err(e) => return Err(e),
    };

    return Ok(ast);
}