1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
//! Public Type Declarations
//!
//! This module defines a number of types used throughout Molt's public API.
//!
//! The most important types are [`Value`], the type of data values in the Molt
//! language, and [`MoltResult`], Molt's standard `Result<T,E>` type. `MoltResult`
//! is an alias for `Result<Value,Exception>`, where [`Exception`] contains the data
//! relating to an exceptional return from a script. The heart of `Exception` is the
//! [`ResultCode`], which represents all of the ways a Molt script might return early:
//! errors, explicit returns, breaks, and continues.
//!
//! [`MoltInt`], [`MoltFloat`], [`MoltList`], and [`MoltDict`] a/Displayre simple type aliases
//! defining Molt's internal representation for integers, floats, and TCL lists and
//! dictionaries.
//!
//! [`MoltResult`]: type.MoltResult.html
//! [`Exception`]: struct.Exception.html
//! [`MoltInt`]: type.MoltInt.html
//! [`MoltFloat`]: type.MoltFloat.html
//! [`MoltList`]: type.MoltList.html
//! [`MoltDict`]: type.MoltDict.html
//! [`ResultCode`]: enum.ResultCode.html
//! [`Value`]: ../value/index.html
//! [`interp`]: interp/index.html
use crate::interp::Interp;
pub use crate::value::Value;
use indexmap::IndexMap;
use std::fmt;
use std::str::FromStr;
// Molt Numeric Types
/// The standard integer type for Molt code.
///
/// The interpreter uses this type internally for all Molt integer values.
/// The primary reason for defining this as a type alias is future-proofing: at
/// some point we may wish to replace `MoltInt` with a more powerful type that
/// supports BigNums, or switch to `i128`.
pub type MoltInt = i64;
/// The standard floating point type for Molt code.
///
/// The interpreter uses this type internally for all Molt floating-point values.
/// The primary reason for defining this as a type alias is future-proofing: at
/// some point we may wish to replace `MoltFloat` with `f128`.
pub type MoltFloat = f64;
/// The standard list type for Molt code.
///
/// Lists are an important data structure, both in Molt code proper and in Rust code
/// that implements and works with Molt commands. A list is a vector of `Value`s.
pub type MoltList = Vec<Value>;
/// The standard dictionary type for Molt code.
///
/// A dictionary is a mapping from `Value` to `Value` that preserves the key insertion
/// order.
pub type MoltDict = IndexMap<Value, Value>;
/// The standard `Result<T,E>` type for Molt code.
///
/// This is the return value of all Molt commands, and the most common return value
/// throughout the Molt code base. Every Molt command returns a [`Value`] (i.e., `Ok(Value)`)
/// on success; if the command has no explicit return value, it returns the empty
/// `Value`, a `Value` whose string representation is the empty string.
///
/// A Molt command returns an [`Exception`] (i.e., `Err(Exception)`) whenever the calling Molt
/// script should return early: on error, when returning an explicit result via the
/// `return` command, or when breaking out of a loop via the `break` or `continue`
/// commands. The precise nature of the return is indicated by the [`Exception`]'s
/// [`ResultCode`].
///
/// Many of the functions in Molt's Rust API also return `MoltResult`, for easy use within
/// Molt command definitions. Others return `Result<T,Exception>` for some type `T`; these
/// are intended to produce a `T` value in Molt command definitions, while easily propagating
/// errors up the call chain.
///
/// [`Exception`]: struct.Exception.html
/// [`ResultCode`]: enum.ResultCode.html
/// [`Value`]: ../value/index.html
pub type MoltResult = Result<Value, Exception>;
/// This enum represents the different kinds of [`Exception`] that result from
/// evaluating a Molt script.
///
/// Client Rust code will usually see only the `Error` code; the others will most often be
/// caught and handled within the interpreter. However, client code may explicitly catch
/// and handle `Break` and `Continue` (or application-defined codes) at both the Rust and
/// the TCL level in order to implement application-specific control structures. (See
/// The Molt Book on the `return` and `catch` commands for more details on the TCL
/// interface.)
///
/// [`Exception`]: struct.Exception.html
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum ResultCode {
/// Value for `return -code` to indicate returning an `Ok(value)` higher up the stack.
/// Client code should rarely if ever need to refer to this constant explicitly.
Okay,
/// A Molt error. The `Exception::value` is the error message for display to the
/// user. The [`molt_err!`] and [`molt_throw!`] macros are usually used to produce
/// errors in client code; but the [`Exception`] struct has a number of methods that
/// give finer grained control.
///
/// [`molt_err!`]: ../macro.molt_err.html
/// [`molt_throw!`]: ../macro.molt_throw.html
/// [`Exception`]: struct.Exception.html
Error,
/// An explicit return from a Molt procedure. The `Exception::value` is the returned
/// value, or the empty value if `return` was called without a return value. This result
/// will bubble up through one or more stack levels (i.e., enclosing TCL procedure calls)
/// and then yield the value as a normal `Ok` result. If it is received when evaluating
/// an arbitrary script, i.e., if `return` is called outside of any procedure, the
/// interpreter will convert it into a normal `Ok` result.
///
/// Clients will rarely need to interact with or reference this result code
/// explicitly, unless implementing application-specific control structures. See
/// The Molt Book documentation for the `return` and `catch` command for the semantics.
Return,
/// A `break` in a Molt loop. It will break out of the inmost enclosing loop in the usual
/// way. If it is returned outside a loop (or some user-defined control structure that
/// supports `break`), the interpreter will convert it into an `Error`.
///
/// Clients will rarely need to interact with or reference this result code
/// explicitly, unless implementing application-specific control structures. See
/// The Molt Book documentation for the `return` and `catch` command for the semantics.
Break,
/// A `continue` in a Molt loop. Execution will continue with the next iteration of
/// the inmost enclosing loop in the usual way. If it is returned outside a loop (or
/// some user-defined control structure that supports `break`), the interpreter will
/// convert it into an error.
///
/// Clients will rarely need to interact with or reference this result code
/// explicitly, unless implementing application-specific control structures. See
/// The Molt Book documentation for the `return` and `catch` command for the semantics.
Continue,
/// A mechanism for defining application-specific result codes.
/// Clients will rarely need to interact with or reference this result code
/// explicitly, unless implementing application-specific control structures. See
/// The Molt Book documentation for the `return` and `catch` command for the semantics.
Other(MoltInt),
}
impl fmt::Display for ResultCode {
/// Formats a result code for use with the `return` command's `-code` option.
/// This is part of making `ResultCode` a valid external type for use with `Value`.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ResultCode::Okay => write!(f, "ok"),
ResultCode::Error => write!(f, "error"),
ResultCode::Return => write!(f, "return"),
ResultCode::Break => write!(f, "break"),
ResultCode::Continue => write!(f, "continue"),
ResultCode::Other(code) => write!(f, "{}", *code),
}
}
}
impl FromStr for ResultCode {
type Err = String;
/// Converts a symbolic or numeric result code into a `ResultCode`. This is part
/// of making `ResultCode` a valid external type for use with `Value`.
fn from_str(value: &str) -> Result<Self, Self::Err> {
match value {
"ok" => return Ok(ResultCode::Okay),
"error" => return Ok(ResultCode::Error),
"return" => return Ok(ResultCode::Return),
"break" => return Ok(ResultCode::Break),
"continue" => return Ok(ResultCode::Continue),
_ => (),
}
match Value::get_int(value) {
Ok(num) => match num {
0 => Ok(ResultCode::Okay),
1 => Ok(ResultCode::Error),
2 => Ok(ResultCode::Return),
3 => Ok(ResultCode::Break),
4 => Ok(ResultCode::Continue),
_ => Ok(ResultCode::Other(num)),
},
Err(exception) => Err(exception.value().as_str().into()),
}
}
}
impl ResultCode {
/// A convenience: retrieves a result code string from the input `Value`
/// the enumerated value as an external type, converting it from
/// `Option<ResultCode>` into `Result<ResultCode,Exception>`.
///
/// This is primarily intended for use by the `return` command; if you really
/// need it, you'd best be familiar with the implementation of `return` in
/// `command.rs`, as well as a good bit of `interp.rs`.
pub fn from_value(value: &Value) -> Result<Self, Exception> {
if let Some(x) = value.as_copy::<ResultCode>() {
Ok(x)
} else {
molt_err!("invalid result code: \"{}\"", value)
}
}
/// Returns the result code as an integer.
///
/// This is primarily intended for use by the `catch` command.
pub fn as_int(&self) -> MoltInt {
match self {
ResultCode::Okay => 0,
ResultCode::Error => 1,
ResultCode::Return => 2,
ResultCode::Break => 3,
ResultCode::Continue => 4,
ResultCode::Other(num) => *num,
}
}
}
/// This struct represents the exceptional results of evaluating a Molt script, as
/// used in [`MoltResult`]. It is often used as the `Err` type for other
/// functions in the Molt API, so that these functions can easily return errors when used
/// in the definition of Molt commands.
///
/// A Molt command or script can return a normal result, as indicated by
/// [`MoltResult`]'s `Ok` variant, or it can return one of a number of exceptional results via
/// `Err(Exception)`. Exceptions bubble up the call stack in the usual way until
/// caught. The different kinds of exceptional result are defined by the
/// [`ResultCode`] enum. Client code is primarily concerned with `ResultCode::Error`
/// exceptions; other exceptions are handled by the interpreter and various control
/// structure commands. Except within application-specific control structure code (a rare
/// bird), non-error exceptions can usually be ignored or converted to error exceptions—
/// and the latter is usually done for you by the interpreter anyway.
///
/// [`ResultCode`]: enum.ResultCode.html
/// [`MoltResult`]: type.MoltResult.html
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Exception {
/// The kind of exception
code: ResultCode,
/// The result value
value: Value,
/// The return -level value. Should be non-zero only for `Return`.
level: usize,
/// The return -code value. Should be equal to `code`, except for `code == Return`.
next_code: ResultCode,
/// The error info, if any.
error_data: Option<ErrorData>,
}
impl Exception {
/// Returns true if the exception is an error exception, and false otherwise. In client
/// code, an Exception almost always will be an error; and unless you're implementing an
/// application-specific control structure can usually be treated as an error in any event.
///
/// # Example
///
/// ```
/// # use molt::types::*;
/// # use molt::Interp;
///
/// let mut interp = Interp::new();
/// let input = "throw MYERR \"Error Message\"";
///
/// match interp.eval(input) {
/// Ok(val) => (),
/// Err(exception) => {
/// assert!(exception.is_error());
/// }
/// }
/// ```
pub fn is_error(&self) -> bool {
self.code == ResultCode::Error
}
/// Returns the exception's error code, only if `is_error()`.
/// exception.
///
/// # Panics
///
/// Panics if the exception is not an error.
pub fn error_code(&self) -> Value {
self.error_data().expect("exception is not an error").error_code()
}
/// Returns the exception's error info, i.e., the human-readable error
/// stack trace, only if `is_error()`.
///
/// # Panics
///
/// Panics if the exception is not an error.
pub fn error_info(&self) -> Value {
self.error_data().expect("exception is not an error").error_info()
}
/// Gets the exception's [`ErrorData`], if any; the error data is available only when
/// the `code()` is `ResultCode::Error`. The error data contains the error's error code
/// and stack trace information.
///
/// # Example
///
/// ```
/// # use molt::types::*;
/// # use molt::Interp;
///
/// let mut interp = Interp::new();
/// let input = "throw MYERR \"Error Message\"";
///
/// match interp.eval(input) {
/// Ok(val) => (),
/// Err(exception) => {
/// if let Some(error_data) = exception.error_data() {
/// assert_eq!(error_data.error_code(), "MYERR".into());
/// }
/// }
/// }
/// ```
///
/// [`ErrorData`]: struct.ErrorData.html
pub fn error_data(&self) -> Option<&ErrorData> {
self.error_data.as_ref()
}
/// Gets the exception's result code.
///
/// # Example
///
/// This example shows catching all of the possible result codes. Except in control
/// structure code, all of these but `ResultCode::Return` can usually be treated as
/// an error; and the caller of `Interp::eval` will only see them if the script being
/// called used the `return` command's `-level` option (or the Rust equivalent).
///
/// ```
/// # use molt::types::*;
/// # use molt::Interp;
///
/// let mut interp = Interp::new();
/// let input = "throw MYERR \"Error Message\"";
///
/// match interp.eval(input) {
/// Ok(val) => (),
/// Err(exception) => {
/// match exception.code() {
/// ResultCode::Okay => { println!("Got an okay!") }
/// ResultCode::Error => { println!("Got an error!") }
/// ResultCode::Return => { println!("Got a return!") }
/// ResultCode::Break => { println!("Got a break!") }
/// ResultCode::Continue => { println!("Got a continue!") }
/// ResultCode::Other(n) => { println!("Got an other {}", n) }
/// }
/// }
/// }
/// ```
pub fn code(&self) -> ResultCode {
self.code
}
/// Gets the exception's value, i.e., the explicit return value or the error message. In
/// client code, this will almost always be an error message.
///
/// # Example
///
/// This example shows catching all of the possible result codes. Except in control
/// structure code, all of these but `ResultCode::Return` can usually be treated as
/// an error; and the caller of `Interp::eval` will only see them if the script being
/// called used the `return` command's `-level` option (or the Rust equivalent).
///
/// ```
/// # use molt::types::*;
/// # use molt::Interp;
///
/// let mut interp = Interp::new();
/// let input = "throw MYERR \"Error Message\"";
///
/// match interp.eval(input) {
/// Ok(val) => (),
/// Err(exception) => {
/// assert_eq!(exception.value(), "Error Message".into());
/// }
/// }
/// ```
pub fn value(&self) -> Value {
self.value.clone()
}
/// Gets the exception's level. The "level" code is set by the `return` command's
/// `-level` option. See The Molt Book's `return` page for the semantics. Client code
/// should rarely if ever need to refer to this.
pub fn level(&self) -> usize {
self.level
}
/// Gets the exception's "next" code (when `code == ResultCode::Return` only). The
/// "next" code is set by the `return` command's `-code` option. See The Molt Book's
/// `return` page for the semantics. Client code should rarely if ever need to refer
/// to this.
pub fn next_code(&self) -> ResultCode {
self.next_code
}
/// Adds a line to the exception's error info, i.e., to its human readable stack trace.
/// This is for use by command definitions that execute a TCL script and wish to
/// add to the stack trace on error as an aid to debugging.
///
/// # Example
///
/// ```
/// # use molt::types::*;
/// # use molt::Interp;
///
/// let mut interp = Interp::new();
/// let input = "throw MYERR \"Error Message\"";
/// assert!(my_func(&mut interp, &input).is_err());
///
/// fn my_func(interp: &mut Interp, input: &str) -> MoltResult {
/// // Evaluates the input; on error, adds some error info and rethrows.
/// match interp.eval(input) {
/// Ok(val) => Ok(val),
/// Err(mut exception) => {
/// if exception.is_error() {
/// exception.add_error_info("in rustdoc example");
/// }
/// Err(exception)
/// }
/// }
/// }
/// ```
///
/// # Panics
///
/// Panics if the exception is not an error exception.
pub fn add_error_info(&mut self, line: &str) {
if let Some(data) = &mut self.error_data {
data.add_info(line);
} else {
panic!("add_error_info called for non-Error Exception");
}
}
/// Creates an `Error` exception with the given error message. This is primarily
/// intended for use by the [`molt_err!`] macro, but it can also be used directly.
///
/// # Example
///
/// ```
/// # use molt::types::*;
///
/// let ex = Exception::molt_err("error message".into());
/// assert!(ex.is_error());
/// assert_eq!(ex.value(), "error message".into());
/// ```
///
/// [`molt_err`]: ../macro.molt_err.html
pub fn molt_err(msg: Value) -> Self {
let data = ErrorData::new(Value::from("NONE"), msg.as_str());
Self {
code: ResultCode::Error,
value: msg,
level: 0,
next_code: ResultCode::Error,
error_data: Some(data),
}
}
pub fn to_help(&mut self) {
if let Some(data) = self.error_data.as_mut() {
data.is_new = false;
}
}
/// Creates an `Error` exception with the given error code and message. An
/// error code is a `MoltList` that indicates the nature of the error. Standard TCL
/// uses the error code to flag specific arithmetic and I/O errors; most other
/// errors have the code `NONE`. At present Molt doesn't define any error codes
/// other than `NONE`, so this method is primarily for use by the `throw` command;
/// but use it if your code needs to provide an error code.
///
/// # Example
///
/// ```
/// # use molt::types::*;
///
/// let ex = Exception::molt_err2("MYERR".into(), "error message".into());
/// assert!(ex.is_error());
/// assert_eq!(ex.error_code(), "MYERR".into());
/// assert_eq!(ex.value(), "error message".into());
/// ```
///
/// [`molt_err`]: ../macro.molt_err.html
pub fn molt_err2(error_code: Value, msg: Value) -> Self {
let data = ErrorData::new(error_code, msg.as_str());
Self {
code: ResultCode::Error,
value: msg,
level: 0,
next_code: ResultCode::Error,
error_data: Some(data),
}
}
/// Creates a `Return` exception, with the given return value. Return `Value::empty()`
/// if there is no specific result.
///
/// This method is primarily for use by the `return` command, and should rarely if
/// ever be needed in client code. If you fully understand the semantics of the `return` and
/// `catch` commands, you'll understand what this does and when you would want
/// to use it. If you don't, you almost certainly don't need it.
pub fn molt_return(value: Value) -> Self {
Self {
code: ResultCode::Return,
value,
level: 1,
next_code: ResultCode::Okay,
error_data: None,
}
}
/// Creates an extended `Return` exception with the given return value, `-level`,
/// and `-code`. Return `Value::empty()` if there is no specific result.
///
/// It's an error if level == 0 and next_code == Okay; that's
/// `Ok(value)` rather than an exception.
///
/// This method is primarily for use by the `return` command, and should rarely if
/// ever be needed in client code. If you fully understand the semantics of the `return` and
/// `catch` commands, you'll understand what this does and when you would want
/// to use it. If you don't, you almost certainly don't need it.
pub fn molt_return_ext(value: Value, level: usize, next_code: ResultCode) -> Self {
assert!(level > 0 || next_code != ResultCode::Okay);
Self {
code: if level > 0 { ResultCode::Return } else { next_code },
value,
level,
next_code,
error_data: None,
}
}
/// Creates an exception that will produce an `Error` exception with the given data,
/// either immediately or some levels up the call chain. This is usually used to
/// rethrow an existing error.
///
/// This method is primarily for use by the `return` command, and should rarely if
/// ever be needed in client code. If you fully understand the semantics of the `return` and
/// `catch` commands, you'll understand what this does and when you would want
/// to use it. If you don't, you almost certainly don't need it.
pub fn molt_return_err(
msg: Value,
level: usize,
error_code: Option<Value>,
error_info: Option<Value>,
) -> Self {
let error_code = error_code.unwrap_or_else(|| Value::from("NONE"));
let error_info = error_info.unwrap_or_else(Value::empty);
let data = ErrorData::rethrow(error_code, error_info.as_str());
Self {
code: if level == 0 { ResultCode::Error } else { ResultCode::Return },
value: msg,
level,
next_code: ResultCode::Error,
error_data: Some(data),
}
}
/// Creates a `Break` exception.
///
/// This method is primarily for use by the `break` command, and should rarely if
/// ever be needed in client code. If you fully understand the semantics of the `return` and
/// `catch` commands, you'll understand what this does and when you would want
/// to use it. If you don't, you almost certainly don't need it.
pub fn molt_break() -> Self {
Self {
code: ResultCode::Break,
value: Value::empty(),
level: 0,
next_code: ResultCode::Break,
error_data: None,
}
}
/// Creates a `Continue` exception.
///
/// This method is primarily for use by the `continue` command, and should rarely if
/// ever be needed in client code. If you fully understand the semantics of the `return` and
/// `catch` commands, you'll understand what this does and when you would want
/// to use it. If you don't, you almost certainly don't need it.
pub fn molt_continue() -> Self {
Self {
code: ResultCode::Continue,
value: Value::empty(),
level: 0,
next_code: ResultCode::Continue,
error_data: None,
}
}
/// Only when the ResultCode is Return:
///
/// * Decrements the -level.
/// * If it's 0, sets code to -code.
///
/// This is used in `Interp::eval_script` to implement the `return` command's
/// `-code` and `-level` protocol.
pub(crate) fn decrement_level(&mut self) {
assert!(self.code == ResultCode::Return && self.level > 0);
self.level -= 1;
if self.level == 0 {
self.code = self.next_code;
}
}
/// This is used by the interpreter when accumulating stack trace information.
/// See Interp::eval_script.
pub(crate) fn is_new_error(&self) -> bool {
if let Some(data) = &self.error_data {
data.is_new()
} else {
false
}
}
}
/// This struct contains the error code and stack trace (i.e., the "error info" string)
/// for `ResultCode::Error` exceptions.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct ErrorData {
/// The error code; defaults to "NONE"
error_code: Value,
/// The TCL stack trace.
stack_trace: Vec<String>,
/// Is this a new error?
is_new: bool,
}
impl ErrorData {
// Creates a new ErrorData given the error code and error message.
// The error data is marked as "new", meaning that the stack_trace is know to contain
// a single error message.
fn new(error_code: Value, error_msg: &str) -> Self {
Self {
error_code,
stack_trace: vec![error_msg.into()],
is_new: true,
}
}
// Creates a rethrown ErrorData given the error code and error info.
// The error data is marked as not-new, meaning that the stack_trace has
// been initialized with a partial stack trace, not just the first error message.
#[inline]
fn rethrow(error_code: Value, error_info: &str) -> Self {
Self {
error_code,
stack_trace: vec![error_info.into()],
is_new: false,
}
}
/// Returns the error code.
#[inline]
pub fn error_code(&self) -> Value {
self.error_code.clone()
}
/// Whether this has just been created, or the stack trace has been extended.
#[inline]
pub(crate) fn is_new(&self) -> bool {
self.is_new
}
/// Returns the human-readable stack trace as a string.
#[inline]
pub fn error_info(&self) -> Value {
Value::from(self.stack_trace.join("\n"))
}
/// Adds to the stack trace, which, having been extended, is no longer new.
#[inline]
pub(crate) fn add_info(&mut self, info: &str) {
self.stack_trace.push(info.into());
self.is_new = false;
}
}
/// In TCL, variable references have two forms. A string like "_some_var_(_some_index_)" is
/// the name of an array element; any other string is the name of a scalar variable. This
/// struct is used when parsing variable references. The `name` is the variable name proper;
/// the `index` is either `None` for scalar variables or `Some(String)` for array elements.
///
/// The Molt [`interp`]'s variable access API usually handles this automatically. Should a
/// command need to distinguish between the two cases it can do so by using the
/// the [`Value`] struct's `Value::as_var_name` method.
///
/// [`Value`]: ../value/index.html
/// [`interp`]: ../interp/index.html
#[derive(Debug, Eq, PartialEq)]
pub struct VarName {
name: String,
index: Option<String>,
}
impl VarName {
/// Creates a scalar `VarName` given the variable's name.
pub fn scalar(name: String) -> Self {
Self { name, index: None }
}
/// Creates an array element `VarName` given the element's variable name and index string.
pub fn array(name: String, index: String) -> Self {
Self { name, index: Some(index) }
}
/// Returns the parsed variable name.
pub fn name(&self) -> &str {
&self.name
}
/// Returns the parsed array index, if any.
pub fn index(&self) -> Option<&str> {
self.index.as_ref().map(|x| &**x)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_result_code_as_string() {
// Tests Display for ResultCode
assert_eq!(Value::from_other(ResultCode::Okay).as_str(), "ok");
assert_eq!(Value::from_other(ResultCode::Error).as_str(), "error");
assert_eq!(Value::from_other(ResultCode::Return).as_str(), "return");
assert_eq!(Value::from_other(ResultCode::Break).as_str(), "break");
assert_eq!(Value::from_other(ResultCode::Continue).as_str(), "continue");
assert_eq!(Value::from_other(ResultCode::Other(5)).as_str(), "5");
}
#[test]
fn test_result_code_from_value() {
// Tests FromStr for ResultCode, from_value
assert_eq!(ResultCode::from_value(&"ok".into()), Ok(ResultCode::Okay));
assert_eq!(ResultCode::from_value(&"error".into()), Ok(ResultCode::Error));
assert_eq!(ResultCode::from_value(&"return".into()), Ok(ResultCode::Return));
assert_eq!(ResultCode::from_value(&"break".into()), Ok(ResultCode::Break));
assert_eq!(ResultCode::from_value(&"continue".into()), Ok(ResultCode::Continue));
assert_eq!(ResultCode::from_value(&"5".into()), Ok(ResultCode::Other(5)));
assert!(ResultCode::from_value(&"nonesuch".into()).is_err());
}
#[test]
fn test_result_code_as_int() {
assert_eq!(ResultCode::Okay.as_int(), 0);
assert_eq!(ResultCode::Error.as_int(), 1);
assert_eq!(ResultCode::Return.as_int(), 2);
assert_eq!(ResultCode::Break.as_int(), 3);
assert_eq!(ResultCode::Continue.as_int(), 4);
assert_eq!(ResultCode::Other(5).as_int(), 5);
}
#[test]
fn test_error_data_new() {
let data = ErrorData::new("CODE".into(), "error message");
assert_eq!(data.error_code(), "CODE".into());
assert_eq!(data.error_info(), "error message".into());
assert!(data.is_new());
}
#[test]
fn test_error_data_rethrow() {
let data = ErrorData::rethrow("CODE".into(), "stack trace");
assert_eq!(data.error_code(), "CODE".into());
assert_eq!(data.error_info(), "stack trace".into());
assert!(!data.is_new());
}
#[test]
fn test_error_data_add_info() {
let mut data = ErrorData::new("CODE".into(), "error message");
assert_eq!(data.error_info(), "error message".into());
assert!(data.is_new());
data.add_info("next line");
assert_eq!(data.error_info(), "error message\nnext line".into());
assert!(!data.is_new());
}
#[test]
fn test_exception_molt_err() {
let mut exception = Exception::molt_err("error message".into());
assert_eq!(exception.code(), ResultCode::Error);
assert_eq!(exception.value(), "error message".into());
assert!(exception.is_error());
assert!(exception.error_data().is_some());
if let Some(data) = exception.error_data() {
assert_eq!(data.error_code(), "NONE".into());
assert_eq!(data.error_info(), "error message".into());
}
exception.add_error_info("from unit test");
if let Some(data) = exception.error_data() {
assert_eq!(data.error_info(), "error message\nfrom unit test".into());
}
}
#[test]
fn test_exception_molt_err2() {
let exception = Exception::molt_err2("CODE".into(), "error message".into());
assert_eq!(exception.code(), ResultCode::Error);
assert_eq!(exception.value(), "error message".into());
assert!(exception.is_error());
assert!(exception.error_data().is_some());
if let Some(data) = exception.error_data() {
assert_eq!(data.error_code(), "CODE".into());
assert_eq!(data.error_info(), "error message".into());
}
}
#[test]
fn test_exception_molt_return_err_level0() {
let exception = Exception::molt_return_err(
"error message".into(),
0,
Some("MYERR".into()),
Some("stack trace".into()),
);
assert_eq!(exception.code(), ResultCode::Error);
assert_eq!(exception.next_code(), ResultCode::Error);
assert_eq!(exception.level(), 0);
assert_eq!(exception.value(), "error message".into());
assert!(exception.is_error());
assert!(exception.error_data().is_some());
if let Some(data) = exception.error_data() {
assert_eq!(data.error_code(), "MYERR".into());
assert_eq!(data.error_info(), "stack trace".into());
}
}
#[test]
fn test_exception_molt_return_err_level2() {
let exception = Exception::molt_return_err(
"error message".into(),
2,
Some("MYERR".into()),
Some("stack trace".into()),
);
assert_eq!(exception.code(), ResultCode::Return);
assert_eq!(exception.next_code(), ResultCode::Error);
assert_eq!(exception.level(), 2);
assert_eq!(exception.value(), "error message".into());
assert!(!exception.is_error());
assert!(exception.error_data().is_some());
if let Some(data) = exception.error_data() {
assert_eq!(data.error_code(), "MYERR".into());
assert_eq!(data.error_info(), "stack trace".into());
}
}
#[test]
#[should_panic]
fn text_exception_add_error_info() {
let mut exception = Exception::molt_break();
exception.add_error_info("should panic; not an error exception");
}
#[test]
fn test_exception_molt_return() {
let exception = Exception::molt_return("result".into());
assert_eq!(exception.code(), ResultCode::Return);
assert_eq!(exception.value(), "result".into());
assert_eq!(exception.level(), 1);
assert_eq!(exception.next_code(), ResultCode::Okay);
assert!(!exception.is_error());
assert!(!exception.error_data().is_some());
}
#[test]
fn test_exception_molt_return_ext() {
let exception = Exception::molt_return_ext("result".into(), 2, ResultCode::Break);
assert_eq!(exception.code(), ResultCode::Return);
assert_eq!(exception.value(), "result".into());
assert_eq!(exception.level(), 2);
assert_eq!(exception.next_code(), ResultCode::Break);
assert!(!exception.is_error());
assert!(!exception.error_data().is_some());
}
#[test]
fn test_exception_molt_break() {
let exception = Exception::molt_break();
assert_eq!(exception.code(), ResultCode::Break);
assert_eq!(exception.value(), "".into());
assert!(!exception.is_error());
assert!(!exception.error_data().is_some());
}
#[test]
fn test_exception_molt_continue() {
let exception = Exception::molt_continue();
assert_eq!(exception.code(), ResultCode::Continue);
assert_eq!(exception.value(), "".into());
assert!(!exception.is_error());
assert!(!exception.error_data().is_some());
}
}