1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
//! The Molt Interpreter
//!
//! The [`Interp`] struct is the primary API for embedding Molt into a Rust application.
//! Given an `Interp`, the application may:
//!
//! * Evaluate scripts and expressions
//! * Check scripts for completeness
//! * Extend the language by defining new Molt commands in Rust
//! * Set and get Molt variables
//! * Access application data via the context cache
//!
//! The following describes the features of the [`Interp`] in general; follow the links for
//! specifics of the various types and methods. See also [The Molt Book] for a general
//! introduction to Molt and its API.
//!
//! # Interp is not Sync!
//!
//! The [`Interp`] class (and the rest of Molt) is intended for use in a single thread. It is
//! safe to have `Interps` in different threads; but use `String` (or another `Sync`)
//! when passing data between them. In particular, [`Value`] is not `Sync`.
//!
//! # Creating an Interpreter
//!
//! There are two ways to create an interpreter. The usual way is to call
//! [`Interp::new`](struct.Interp.html#method.new), which creates an interpreter and populates
//! it with all of the standard Molt commands. The application can then add any
//! application-specific commands.
//!
//! Alternatively, [`Interp::empty`](struct.Interp.html#method.empty) creates an interpreter
//! with no built-in commands, allowing the application to define only those commands it needs.
//! Such an empty interpreter can be configured as the parser for data and configuration files,
//! or as the basis for a simple console command set.
//!
//! **TODO**: Define a way to add various subsets of the standard commands to an initially
//! empty interpreter.
//!
//! ```
//! use molt::Interp;
//! let mut interp = Interp::default();
//!
//! // add commands, evaluate scripts, etc.
//! ```
//!
//! # Evaluating Scripts
//!
//! There are a number of ways to evaluate Molt scripts. The simplest is to pass the script
//! as a string to `Interp::eval`. The interpreter evaluates the string as a Molt script, and
//! returns either a normal [`Value`] containing the result, or a Molt error. The script is
//! evaluated in the caller's context: if called at the application level, the script will be
//! evaluated in the interpreter's global scope; if called by a Molt command, it will be
//! evaluated in the scope in which that command is executing.
//!
//! For example, the following snippet uses the Molt `expr` command to evaluate an expression.
//!
//! ```
//! use molt::Interp;
//! use molt::molt_ok;
//! use molt::types::*;
//!
//! let _ = my_func();
//!
//! fn my_func() -> MoltResult {
//! // FIRST, create the interpreter and add the needed command.
//! let mut interp = Interp::default();
//!
//! // NEXT, evaluate a script containing an expression,
//! // propagating errors back to the caller
//! let val = interp.eval("expr {2 + 2}")?;
//! assert_eq!(val.as_str(), "4");
//! assert_eq!(val.as_int()?, 4);
//!
//! molt_ok!()
//! }
//! ```
//!
//! [`Interp::eval_value`](struct.Interp.html#method.eval_value) is equivalent to
//! `Interp::eval` but takes the script as a `Value` instead of as a `&str`. When
//! called at the top level, both methods convert the `break` and `continue` return codes
//! (and any user-defined return codes) to errors; otherwise they are propagated to the caller
//! for handling. It is preferred to use `Interp::eval_value` when possible, as `Interp::eval`
//! will reparse its argument each time if called multiple times on the same input.
//!
//! All of these methods return [`MoltResult`]:
//!
//! ```ignore
//! pub type MoltResult = Result<Value, Exception>;
//! ```
//!
//! [`Value`] is the type of all Molt values (i.e., values that can be passed as parameters and
//! stored in variables). [`Exception`] is a struct that encompasses all of the kinds of
//! exceptional return from Molt code, including errors, `return`, `break`, and `continue`.
//!
//! # Evaluating Expressions
//!
//! In Molt, as in Standard Tcl, algebraic expressions are evaluated by the `expr` command. At
//! the Rust level this feature is provided by the
//! [`Interp::expr`](struct.Interp.html#method.expr) method, which takes the expression as a
//! [`Value`] and returns the computed `Value` or an error.
//!
//! There are three convenience methods,
//! [`Interp::expr_bool`](struct.Interp.html#method.expr_bool),
//! [`Interp::expr_int`](struct.Interp.html#method.expr_int), and
//! [`Interp::expr_float`](struct.Interp.html#method.expr_float), which streamline the computation
//! of a particular kind of value, and return an error if the computed result is not of that type.
//!
//! For example, the following code shows how a command can evaluate a string as a boolean value,
//! as in the `if` or `while` commands:
//!
//! ```
//! use molt::Interp;
//! use molt::molt_ok;
//! use molt::types::*;
//!
//! # let _ = dummy();
//! # fn dummy() -> MoltResult {
//! // FIRST, create the interpreter
//! let mut interp = Interp::default();
//!
//! // NEXT, get an expression as a Value. In a command body it would
//! // usually be passed in as a Value.
//! let expr = Value::from("1 < 2");
//!
//! // NEXT, evaluate it!
//! assert!(interp.expr_bool(&expr)?);
//! # molt_ok!()
//! # }
//! ```
//!
//! These methods will return an error if the string cannot be interpreted
//! as an expression of the relevant type.
//!
//! # Defining New Commands
//!
//! The usual reason for embedding Molt in an application is to extend it with
//! application-specific commands. There are several ways to do this.
//!
//! The simplest method, and the one used by most of Molt's built-in commands, is to define a
//! [`CommandFunc`] and register it with the interpreter using the
//! [`Interp::add_command`](struct.Interp.html#method.add_command) method. A `CommandFunc` is
//! simply a Rust function that returns a [`MoltResult`] given an interpreter and a slice of Molt
//! [`Value`] objects representing the command name and its arguments. The function may interpret
//! the array of arguments in any way it likes.
//!
//! The following example defines a command called `square` that squares an integer value.
//!
//! ```
//! use molt::Interp;
//! use molt::check_args;
//! use molt::molt_ok;
//! use molt::types::*;
//!
//! # let _ = dummy();
//! # fn dummy() -> MoltResult {
//! // FIRST, create the interpreter and add the needed command.
//! let mut interp = Interp::default();
//! interp.add_command("square", cmd_square);
//!
//! // NEXT, try using the new command.
//! let val = interp.eval("square 5")?;
//! assert_eq!(val.as_str(), "25");
//! # molt_ok!()
//! # }
//!
//! // The command: square intValue
//! fn cmd_square(_: &mut Interp, _: &[ContextID], argv: &[Value]) -> MoltResult {
//! // FIRST, check the number of arguments. Returns an appropriate error
//! // for the wrong number of arguments.
//! check_args(1, argv, 2, 2, "intValue")?;
//!
//! // NEXT, get the intValue argument as an int. Returns an appropriate error
//! // if the argument can't be interpreted as an integer.
//! let intValue = argv[1].as_int()?;
//!
//! // NEXT, return the product.
//! molt_ok!(intValue * intValue)
//! }
//! ```
//!
//! The new command can then be used in a Molt interpreter:
//!
//! ```tcl
//! % square 5
//! 25
//! % set a [square 6]
//! 36
//! % puts "a=$a"
//! a=36
//! ```
//!
//! # Accessing Variables
//!
//! Molt defines two kinds of variables, scalars and arrays. A scalar variable is a named holder
//! for a [`Value`]. An array variable is a named hash table whose elements are named holders
//! for `Values`. Each element in an array is like a scalar in its own right. In Molt code
//! the two kinds of variables are accessed as follows:
//!
//! ```tcl
//! % set myScalar 1
//! 1
//! % set myArray(myElem) 2
//! 2
//! % puts "$myScalar $myArray(myElem)"
//! 1 2
//! ```
//!
//! In theory, any string can be a valid variable or array index string. In practice, variable
//! names usually follow the normal rules for identifiers: letters, digits and underscores,
//! beginning with a letter, while array index strings usually don't contain parentheses and
//! so forth. But array index strings can be arbitrarily complex, and so a single TCL array can
//! contain a vast variety of data structures.
//!
//! Molt commands will usually use the
//! [`Interp::var`](struct.Interp.html#method.var),
//! [`Interp::set_var`](struct.Interp.html#method.set_var), and
//! [`Interp::set_var_return`](struct.Interp.html#method.set_var_return) methods to set and
//! retrieve variables. Each takes a variable reference as a `Value`. `Interp::var` retrieves
//! the variable's value as a `Value`, return an error if the variable doesn't exist.
//! `Interp::set_var` and `Interp::set_var_return` set the variable's value, creating the
//! variable or array element if it doesn't exist.
//!
//! `Interp::set_var_return` returns the value assigned to the variable, which is convenient
//! for commands that return the value assigned to the variable. The standard `set` command,
//! for example, returns the assigned or retrieved value; it is defined like this:
//!
//! ```
//! use molt::Interp;
//! use molt::check_args;
//! use molt::molt_ok;
//! use molt::types::*;
//!
//! pub fn cmd_set(interp: &mut Interp, _: &[ContextID], argv: &[Value]) -> MoltResult {
//! check_args(1, argv, 2, 3, "varName ?newValue?")?;
//!
//! if argv.len() == 3 {
//! interp.set_var_return(&argv[1], argv[2].clone())
//! } else {
//! molt_ok!(interp.var(&argv[1])?)
//! }
//!}
//! ```
//!
//! At times it can be convenient to explicitly access a scalar variable or array element by
//! by name. The methods
//! [`Interp::scalar`](struct.Interp.html#method.scalar),
//! [`Interp::set_scalar`](struct.Interp.html#method.set_scalar),
//! [`Interp::set_scalar_return`](struct.Interp.html#method.set_scalar_return),
//! [`Interp::element`](struct.Interp.html#method.element),
//! [`Interp::set_element`](struct.Interp.html#method.set_element), and
//! [`Interp::set_element_return`](struct.Interp.html#method.set_element_return)
//! provide this access.
//!
//! # Managing Application or Library-Specific Data
//!
//! Molt provides a number of data types out of the box: strings, numbers, and lists. However,
//! any data type that can be unambiguously converted to and from a string can be easily
//! integrated into Molt. See the [`value`] module for details.
//!
//! Other data types _cannot_ be represented as strings in this way, e.g., file handles,
//! database handles, or keys into complex application data structures. Such types can be
//! represented as _key strings_ or as _object commands_. In Standard TCL/TK, for example,
//! open files are represented as strings like `file1`, `file2`, etc. The commands for
//! reading and writing to files know how to look these keys up in the relevant data structure.
//! TK widgets, on the other hand, are presented as object commands: a command with subcommands
//! where the command itself knows how to access the relevant data structure.
//!
//! Application-specific commands often need access to the application's data structure.
//! Often many commands will need access to the same data structure. This is often the case
//! for complex binary extensions as well (families of Molt commands implemented as a reusable
//! crate), where all of the commands in the extension need access to some body of
//! extension-specific data.
//!
//! All of these patterns (and others) are implemented by means of the interpreter's
//! _context cache_, which is a means of relating mutable data to a particular command or
//! family of commands. See below.
//!
//! # Commands and the Context Cache
//!
//! Most Molt commands require access only to the Molt interpreter in order to do their
//! work. Some need mutable or immutable access to command-specific data (which is often
//! application-specific data). This is provided by means of the interpreter's
//! _context cache_:
//!
//! * The interpreter is asked for a new `ContextID`, an ID that is unique in that interpreter.
//!
//! * The client associates the context ID with a new instance of a context data structure,
//! usually a struct. This data structure is added to the context cache.
//!
//! * This struct may contain the data required by the command(s), or keys allowing it
//! to access the data elsewhere.
//!
//! * The `ContextID` (can be multiple, provided as a slice) is provided to the interpreter when adding commands that require that
//! context(s).
//!
//! * A command can mutably access its context data when it is executed.
//!
//! * The cached data is dropped when the last command referencing a `ContextID` is removed
//! from the interpreter.
//!
//! This mechanism supports all of the patterns described above. For example, Molt's
//! test harness provides a `test` command that defines a single test. When it executes, it must
//! increment a number of statistics: the total number of tests, the number of successes, the
//! number of failures, etc. This can be implemented as follows:
//!
//! ```
//! use molt::Interp;
//! use molt::check_args;
//! use molt::molt_ok;
//! use molt::types::*;
//!
//! // The context structure to hold the stats
//! struct Stats {
//! num_tests: usize,
//! num_passed: usize,
//! num_failed: usize,
//! }
//!
//! // Whatever methods the app needs
//! impl Stats {
//! fn new() -> Self {
//! Self { num_tests: 0, num_passed: 0, num_failed: 0}
//! }
//! }
//!
//! # let _ = dummy();
//! # fn dummy() -> MoltResult {
//! // Create the interpreter.
//! let mut interp = Interp::default();
//!
//! // Create the context struct, assigning a context ID
//! let context_id = interp.save_context(Stats::new());
//!
//! // Add the `test` command with the given context.
//! interp.add_context_command("test", cmd_test, &[context_id]);
//!
//! // Try using the new command. It should increment the `num_passed` statistic.
//! let val = interp.eval("test ...")?;
//! assert_eq!(interp.context::<Stats>(context_id).num_passed, 1);
//! # molt_ok!()
//! # }
//!
//! // A stub test command. It ignores its arguments, and
//! // increments the `num_passed` statistic in its context.
//! fn cmd_test(interp: &mut Interp, context_ids: &[ContextID], argv: &[Value]) -> MoltResult {
//! // Pretend it passed
//! interp.context::<Stats>(context_ids[0]).num_passed += 1;
//!
//! molt_ok!()
//! }
//! ```
//!
//! # Ensemble Commands
//!
//! An _ensemble command_ is simply a command with subcommands, like the standard Molt `info`
//! and `array` commands. At the Rust level, it is simply a command that looks up its subcommand
//! (e.g., `argv[1]`) in an array of `Subcommand` structs and executes it as a command.
//!
//! The [`Interp::call_subcommand`](struct.Interp.html#method.call_subcommand) method is used
//! to look up and call the relevant command function, handling all relevant errors in the
//! TCL-standard way.
//!
//! For example, the `array` command is defined as follows.
//!
//! ```ignore
//! const ARRAY_SUBCOMMANDS: [Subcommand; 6] = [
//! Subcommand("exists", cmd_array_exists),
//! Subcommand("get", cmd_array_get),
//! // ...
//! ];
//!
//! pub fn cmd_array(interp: &mut Interp, context_ids: &[ContextID], argv: &[Value]) -> MoltResult {
//! interp.call_subcommand(context_ids, argv, 1, &ARRAY_SUBCOMMANDS)
//! }
//!
//! pub fn cmd_array_exists(interp: &mut Interp, _: &[ContextID], argv: &[Value]) -> MoltResult {
//! check_args(2, argv, 3, 3, "arrayName")?;
//! molt_ok!(Value::from(interp.array_exists(argv[2].as_str())))
//! }
//!
//! // ...
//! ```
//!
//! The `cmd_array` and `cmd_array_exists` functions are just normal Molt `CommandFunc`
//! functions. The `array` command is added to the interpreter using `Interp::add_command`
//! in the usual way. Note that the `context_id`s are passed to the subcommand functions, though
//! in this case it isn't needed.
//!
//! Also, notice that the call to `check_args` in `cmd_array_exists` has `2` as its first
//! argument, rather than `1`. That indicates that the first two arguments represent the
//! command being called, e.g., `array exists`.
//!
//! # Object Commands
//!
//! An _object command_ is an _ensemble command_ that represents an object; the classic TCL
//! examples are the TK widgets. The pattern for defining object commands is as follows:
//!
//! * A constructor command that creates instances of the given object type. (We use the word
//! *type* rather than *class* because inheritance is usually neither involved or available.)
//!
//! * An instance is an ensemble command:
//! * Whose name is provided to the constructor
//! * That has an associated context structure, initialized by the constructor, that belongs
//! to it alone.
//!
//! * Each of the object's subcommand functions is passed the object's context ID, so that all
//! can access the object's data.
//!
//! Thus, the constructor command will do the following:
//!
//! * Create and initialize a context structure, assigning it a `ContextID` via
//! `Interp::save_context`.
//! * The context structure may be initialized with default values, or configured further
//! based on the constructor command's arguments.
//!
//! * Determine a name for the new instance.
//! * The name is usually passed in as an argument, but can be computed.
//!
//! * Create the instance using `Interp::add_context_command` and the instance's ensemble
//! `CommandFunc`.
//!
//! * Usually, return the name of the newly created command.
//!
//! Note that there's no real difference between defining a simple ensemble like `array`, as
//! shown above, and defining an object command as described here, except that:
//!
//! * The instance is usually created "on the fly" rather than at interpreter initialization.
//! * The instance will always have data in the context cache.
//!
//! # Checking Scripts for Completeness
//!
//! The [`Interp::complete`](struct.Interp.html#method.complete) method checks whether a Molt
//! script is complete: e.g., that it contains no unterminated quoted or braced strings,
//! that would prevent it from being evaluated as Molt code. This is useful when
//! implementing a Read-Eval-Print-Loop, as it allows the REPL to easily determine whether it
//! should evaluate the input immediately or ask for an additional line of input.
//!
//! [The Molt Book]: https://wduquette.github.io/molt/
//! [`MoltResult`]: ../types/type.MoltResult.html
//! [`Exception`]: ../types/enum.Exception.html
//! [`CommandFunc`]: ../types/type.CommandFunc.html
//! [`Value`]: ../value/index.html
//! [`Interp`]: struct.Interp.html
use crate::check_args;
use crate::dict::dict_new;
use crate::expr;
use crate::gen_command;
use crate::list::list_to_string;
use crate::molt_err;
use crate::molt_ok;
use crate::parser;
use crate::parser::Script;
use crate::parser::Word;
use crate::scope::ScopeStack;
use crate::types::*;
use crate::value::Value;
use std::collections::HashMap;
use std::rc::Rc;
cfg_if::cfg_if! {
if #[cfg(feature = "wasm")] {
use wasm_timer::Instant;
}else{
use std::time::Instant;
}
}
// Constants
const OPT_CODE: &str = "-code";
const OPT_LEVEL: &str = "-level";
const OPT_ERRORCODE: &str = "-errorcode";
const OPT_ERRORINFO: &str = "-errorinfo";
const ZERO: &str = "0";
pub enum CommandType {
Native,
Embedded,
Proc,
}
pub struct Command<Ctx: 'static> {
fn_execute: fn(&str, &mut Interp<Ctx>, &[Value]) -> MoltResult,
fn_type: fn(&str, &Interp<Ctx>) -> Option<CommandType>,
native_names: &'static [&'static str],
embedded_names: &'static [&'static str],
}
impl<Ctx> Command<Ctx> {
#[inline]
pub fn new(
fn_execute: fn(&str, &mut Interp<Ctx>, &[Value]) -> MoltResult,
fn_type: fn(&str, &Interp<Ctx>) -> Option<CommandType>,
native_names: &'static [&'static str],
embedded_names: &'static [&'static str],
) -> Self {
Self { fn_execute, fn_type, native_names, embedded_names }
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "std_buff")] {
/// The Molt Interpreter.
///
/// The `Interp` struct is the primary API for
/// embedding Molt into a Rust application. The application creates an instance
/// of `Interp`, configures with it the required set of application-specific
/// and standard Molt commands, and then uses it to evaluate Molt scripts and
/// expressions. See the
/// [module level documentation](index.html)
/// for an overview.
///
/// # Example
///
/// By default, the `Interp` comes configured with the full set of standard
/// Molt commands.
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
/// let four = interp.eval("expr {2 + 2}")?;
/// assert_eq!(four, Value::from(4));
/// # molt_ok!()
/// # }
/// ```
///
/// The `Interp` can be associated with a lifetime. If so, it is allowed
/// to create contexts consisting of references and mutable references
/// within that lifetime. Under the hood, the references are stored as
/// raw pointers.
pub struct Interp<Ctx> where
Ctx: 'static,
{
pub name: &'static str,
// Command Table
command: Command<Ctx>,
procs: HashMap<String, Rc<Procedure>>,
// Variable Table
scopes: ScopeStack,
/// Embedded context
pub context: Ctx,
pub std_buff: Vec<Result<Value,Exception>>,
// Defines the recursion limit for Interp::eval().
recursion_limit: usize,
// Current number of eval levels.
num_levels: usize,
// Profile Map
profile_map: HashMap<String, ProfileRecord>,
// Whether to continue execution in case of error.
continue_on_error: bool,
}
}else{
/// The Molt Interpreter.
///
/// The `Interp` struct is the primary API for
/// embedding Molt into a Rust application. The application creates an instance
/// of `Interp`, configures with it the required set of application-specific
/// and standard Molt commands, and then uses it to evaluate Molt scripts and
/// expressions. See the
/// [module level documentation](index.html)
/// for an overview.
///
/// # Example
///
/// By default, the `Interp` comes configured with the full set of standard
/// Molt commands.
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
/// let four = interp.eval("expr {2 + 2}")?;
/// assert_eq!(four, Value::from(4));
/// # molt_ok!()
/// # }
/// ```
///
/// The `Interp` can be associated with a lifetime. If so, it is allowed
/// to create contexts consisting of references and mutable references
/// within that lifetime. Under the hood, the references are stored as
/// raw pointers.
pub struct Interp<Ctx> where
Ctx: 'static,
{
name: &'static str,
// Command Table
command: Command<Ctx>,
procs: HashMap<String, Rc<Procedure>>,
// Variable Table
scopes: ScopeStack,
/// Embedded context
pub context: Ctx,
// Defines the recursion limit for Interp::eval().
recursion_limit: usize,
// Current number of eval levels.
num_levels: usize,
// Profile Map
profile_map: HashMap<String, ProfileRecord>,
// Whether to continue execution in case of error.
continue_on_error: bool,
}
}
}
#[derive(Debug, Clone, Copy)]
struct ProfileRecord {
count: u128,
nanos: u128,
}
impl ProfileRecord {
fn new() -> Self {
Self { count: 0, nanos: 0 }
}
}
impl Interp<()> {
/// Creates a new Molt interpreter with no commands defined. Use this when crafting
/// command languages that shouldn't include the normal TCL commands, or as a base
/// to which specific Molt command sets can be added.
///
/// # Example
///
/// ```
/// # use molt::interp::Interp;
/// let mut interp = Interp::default(());
/// ```
pub fn default() -> Self {
use crate::prelude::*;
let command = gen_command!(
(),
// native commands
[
// TODO: Requires file access. Ultimately, might go in an extension crate if
// the necessary operations aren't available in core::).
(_SOURCE, cmd_source),
// TODO: Useful for entire programs written in Molt; but not necessarily wanted in
// extension scripts).
(_EXIT, cmd_exit),
// TODO: Developer Tools
(_PARSE, cmd_parse),
(_PDUMP, cmd_pdump),
(_PCLEAR, cmd_pclear)
],
// embedded commands
[]
);
Interp::new((), command, true, "default-app")
}
}
// NOTE: The order of methods in the generated RustDoc depends on the order in this block.
// Consequently, methods are ordered pedagogically.
impl<Ctx> Interp<Ctx>
where
Ctx: 'static,
{
#[inline]
pub fn contains_proc(&self, proc_name: &str) -> bool {
self.procs.contains_key(proc_name)
}
#[inline]
pub fn get_proc(&self, proc_name: &str) -> Option<&Rc<Procedure>> {
self.procs.get(proc_name)
}
/// Creates a new Molt interpreter that is pre-populated with the standard Molt commands.
/// Use [`command_names`](#method.command_names) (or the `info commands` Molt command)
/// to retrieve the full list, and the [`add_command`](#method.add_command) family of
/// methods to extend the interpreter with new commands.
///
/// TODO: Define command sets (sets of commands that go together, so that clients can
/// add or remove them in groups).
///
/// ```
/// # use molt::types::*;
/// # use molt::Interp;
/// # use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
/// let four = interp.eval("expr {2 + 2}")?;
/// assert_eq!(four, Value::from(4));
/// # molt_ok!()
/// # }
/// ```
///
#[inline]
pub fn new(
context: Ctx,
command: Command<Ctx>,
use_env: bool,
name: &'static str,
) -> Self {
cfg_if::cfg_if! {
if #[cfg(feature = "std_buff")] {
let mut interp = Self {
name,
command,
recursion_limit: 1000,
procs: HashMap::new(),
context,
std_buff: Vec::new(),
scopes: ScopeStack::new(),
num_levels: 0,
profile_map: HashMap::new(),
continue_on_error: false,
};
} else {
let mut interp = Self {
name,
recursion_limit: 1000,
command,
procs: HashMap::new(),
context,
scopes: ScopeStack::new(),
num_levels: 0,
profile_map: HashMap::new(),
continue_on_error: false,
};
}
}
interp.set_scalar("errorInfo", Value::empty()).unwrap();
if use_env {
// Populate the environment variable.
// TODO: Really should be a "linked" variable, where sets to it are tracked and
// written back to the environment.
interp.populate_env();
}
interp
}
/// Populates the TCL `env()` array with the process's environment variables.
///
/// # TCL Liens
///
/// Changes to the variable are not mirrored back into the process's environment.
#[inline]
fn populate_env(&mut self) {
for (key, value) in std::env::vars() {
// Drop the result, as there's no good reason for this to ever throw an error.
let _ = self.set_element("env", &key, value.into());
}
}
//--------------------------------------------------------------------------------------------
// Script and Expression Evaluation
/// Evaluates a script one command at a time. Returns the [`Value`](../value/index.html)
/// of the last command in the script, or the value of any explicit `return` call in the
/// script, or any error thrown by the script. Other
/// [`Exception`](../types/enum.Exception.html) values are converted to normal errors.
///
/// Use this method (or [`eval_value`](#method.eval_value)) to evaluate arbitrary scripts,
/// control structure bodies, and so forth. Prefer `eval_value` if the script is already
/// stored in a `Value`, as it will be more efficient if the script is evaluated multiple
/// times.
///
/// # Example
///
/// The following code shows how to evaluate a script and handle the result, whether
/// it's a computed `Value` or an error message (which is also a `Value`).
///
/// ```
/// # use molt::types::*;
/// # use molt::Interp;
///
/// let mut interp = Interp::default();
///
/// let input = "set a 1";
///
/// match interp.eval(input) {
/// Ok(val) => {
/// // Computed a Value
/// println!("Value: {}", val);
/// }
/// Err(exception) => {
/// if exception.is_error() {
/// // Got an error; print it out.
/// println!("Error: {}", exception.value());
/// } else {
/// // It's a Return.
/// println!("Value: {}", exception.value());
/// }
/// }
/// }
/// ```
#[inline]
pub fn eval(&mut self, script: &str) -> MoltResult {
let value = Value::from(script);
self.eval_value(&value)
}
/// Evaluates the string value of a [`Value`] as a script. Returns the `Value`
/// of the last command in the script, or the value of any explicit `return` call in the
/// script, or any error thrown by the script. Other
/// [`Exception`](../types/enum.Exception.html) values are converted to normal errors.
///
/// This method is equivalent to [`eval`](#method.eval), but works on a `Value` rather
/// than on a string slice. Use it or `eval` to evaluate arbitrary scripts,
/// control structure bodies, and so forth. Prefer this to `eval` if the script is already
/// stored in a `Value`, as it will be more efficient if the script is evaluated multiple
/// times.
///
/// [`Value`]: ../value/index.html
#[inline]
pub fn eval_value(&mut self, value: &Value) -> MoltResult {
// TODO: Could probably do better, here. If the value is already a list, for
// example, can maybe evaluate it as a command without using as_script().
// Tricky, though. Don't want to have to parse it as a list. Need a quick way
// to determine if something is already a list. (Might need two methods!)
// FIRST, check the number of nesting levels
self.num_levels += 1;
if self.num_levels > self.recursion_limit {
self.num_levels -= 1;
return molt_err!("too many nested calls to Interp::eval (infinite loop?)");
}
// NEXT, evaluate the script and translate the result to Ok or Error
let mut result = self.eval_script(&*value.as_script()?);
// NEXT, decrement the number of nesting levels.
self.num_levels -= 1;
// NEXT, translate and return the result.
if self.num_levels == 0 {
if let Err(mut exception) = result {
// FIRST, handle the return -code, -level protocol
if exception.code() == ResultCode::Return {
exception.decrement_level();
}
result = match exception.code() {
ResultCode::Okay => Ok(exception.value()),
ResultCode::Error => Err(exception),
ResultCode::Return => Err(exception), // -level > 0
ResultCode::Break => molt_err!("invoked \"break\" outside of a loop"),
ResultCode::Continue => {
molt_err!("invoked \"continue\" outside of a loop")
}
// TODO: Better error message
ResultCode::Other(_) => molt_err!("unexpected result code."),
};
}
}
if let Err(exception) = &result {
if exception.is_error() {
self.set_global_error_data(exception.error_data())?;
}
}
result
}
/// Saves the error exception data
#[inline]
fn set_global_error_data(
&mut self,
error_data: Option<&ErrorData>,
) -> Result<(), Exception> {
if let Some(data) = error_data {
// TODO: Might want a public method for this. Or, if I implement namespaces, that's
// sufficient.
self.scopes.set_global("errorInfo", data.error_info())?;
self.scopes.set_global("errorCode", data.error_code())?;
}
Ok(())
}
/// Evaluates a parsed Script, producing a normal MoltResult.
/// Also used by expr.rs.
///
/// When [`continue_on_error`](Interp::set_continue_on_error)
/// is set, the script will proceed even
/// if an error is encountered.
/// In this case, it will only return an error if the last command
/// emits one.
pub(crate) fn eval_script(&mut self, script: &Script) -> MoltResult {
let mut result_value: MoltResult = Ok(Value::empty());
for word_vec in script.commands() {
let words = match self.eval_word_vec(word_vec.words()) {
Ok(words) => words,
Err(e) => {
if e.code() == ResultCode::Error && self.continue_on_error {
if let Err(e) = result_value {
// this intermediate error is going to be overwritten.
// (due to `continue_on_error` being set).
// we log it before heading over to next command.
cfg_if::cfg_if! {
if #[cfg(feature = "wasm")] {
self.std_buff.push(Err(e.clone()));
}
}
}
result_value = Err(e);
continue;
}
return Err(e);
}
};
if words.is_empty() {
break;
}
let name = words[0].as_str();
if let Err(e) = result_value {
// this intermediate error is going to be overwritten.
// (due to `continue_on_error` being set).
// we log it before heading over to next command.
cfg_if::cfg_if! {
if #[cfg(feature = "wasm")] {
self.std_buff.push(Err(e.clone()));
}
}
}
// if let Some(cmd) = self.commands.get(name) {
// let start = Instant::now();
let result = (self.command.fn_execute)(name, self, words.as_slice());
// self.profile_save(&format!("cmd.execute({})", name), start);
if let Ok(v) = result {
result_value = Ok(v);
} else if let Err(mut exception) = result {
// TODO: I think this needs to be done up above.
// // Handle the return -code, -level protocol
// if exception.code() == ResultCode::Return {
// exception.decrement_level();
// }
match exception.code() {
// ResultCode::Okay => result_value = exception.value(),
ResultCode::Error => {
// FIRST, new error, an error from within a proc, or an error from
// within some other body (ignored).
if exception.is_new_error() {
exception.add_error_info("while executing");
// TODO: Add command. In standard TCL, this is the text of the command
// before interpolation; at present, we don't have that info in a
// convenient form. For now, just convert the final words to a string.
exception.add_error_info(&format!(
" \"{}\"",
&list_to_string(&words)
));
}
// else if cmd.is_proc() {
// exception.add_error_info(" invoked from within");
// exception
// .add_error_info(&format!(" (procedure \"{}\" line TODO)", name));
// // TODO: same as above.
// exception.add_error_info(&format!("\"{}\"", &list_to_string(&words)));
// }
}
// return, continue, break, and custom logic
// always exit the script and
// are not affected by the error flag.
_ => return Err(exception),
}
if !self.continue_on_error {
return Err(exception);
} else {
result_value = Err(exception);
}
} else {
unreachable!();
}
// } else {
// let err = molt_err!("invalid command name \"{}\"", name);
// if !self.continue_on_error {
// return err;
// } else {
// result_value = err;
// }
// }
}
result_value
}
/// Evaluates a WordVec, producing a list of Values. The expansion operator is handled
/// as a special case.
#[inline]
fn eval_word_vec(&mut self, words: &[Word]) -> Result<MoltList, Exception> {
let mut list: MoltList = Vec::new();
for word in words {
if let Word::Expand(word_to_expand) = word {
let value = self.eval_word(word_to_expand)?;
for val in &*value.as_list()? {
list.push(val.clone());
}
} else {
list.push(self.eval_word(word)?);
}
}
Ok(list)
}
/// Evaluates a single word, producing a value. This is also used by expr.rs.
#[inline]
pub(crate) fn eval_word(&mut self, word: &Word) -> MoltResult {
match word {
Word::Value(val) => Ok(val.clone()),
Word::VarRef(name) => self.scalar(name),
Word::ArrayRef(name, index_word) => {
let index = self.eval_word(index_word)?;
self.element(name, index.as_str())
}
Word::Script(script) => self.eval_script(script),
Word::Tokens(tokens) => {
let tlist = self.eval_word_vec(tokens)?;
let string: String = tlist.iter().map(|i| i.as_str()).collect();
Ok(Value::from(string))
}
Word::Expand(_) => panic!("recursive Expand!"),
Word::String(str) => Ok(Value::from(str)),
}
}
/// Returns the `return` option dictionary for the given result as a dictionary value.
/// Used by the `catch` command.
pub(crate) fn return_options(&self, result: &MoltResult) -> Value {
let mut opts = dict_new();
match result {
Ok(_) => {
opts.insert(OPT_CODE.into(), ZERO.into());
opts.insert(OPT_LEVEL.into(), ZERO.into());
}
Err(exception) => {
// FIRST, set the -code
match exception.code() {
ResultCode::Okay => unreachable!(), // TODO: Not in use yet
ResultCode::Error => {
let data =
exception.error_data().expect("Error has no error data");
opts.insert(OPT_CODE.into(), "1".into());
opts.insert(OPT_ERRORCODE.into(), data.error_code());
opts.insert(OPT_ERRORINFO.into(), data.error_info());
// TODO: Standard TCL also sets -errorstack, -errorline.
}
ResultCode::Return => {
opts.insert(
OPT_CODE.into(),
exception.next_code().as_int().into(),
);
if let Some(data) = exception.error_data() {
opts.insert(OPT_ERRORCODE.into(), data.error_code());
opts.insert(OPT_ERRORINFO.into(), data.error_info());
}
}
ResultCode::Break => {
opts.insert(OPT_CODE.into(), "3".into());
}
ResultCode::Continue => {
opts.insert(OPT_CODE.into(), "4".into());
}
ResultCode::Other(num) => {
opts.insert(OPT_CODE.into(), num.into());
}
}
// NEXT, set the -level
opts.insert(OPT_LEVEL.into(), Value::from(exception.level() as MoltInt));
}
}
Value::from(opts)
}
/// Determines whether or not the script is syntactically complete,
/// e.g., has no unmatched quotes, brackets, or braces.
///
/// REPLs use this to determine whether or not to ask for another line of
/// input.
///
/// # Example
///
/// ```
/// # use molt::types::*;
/// # use molt::interp::Interp;
/// let mut interp = Interp::default();
/// assert!(interp.complete("set a [expr {1+1}]"));
/// assert!(!interp.complete("set a [expr {1+1"));
/// ```
#[inline]
pub fn complete(&mut self, script: &str) -> bool {
parser::parse(script).is_ok()
}
/// Evaluates a [Molt expression](https://wduquette.github.io/molt/ref/expr.html) and
/// returns its value. The expression is passed as a `Value` which is interpreted as a
/// `String`.
///
/// # Example
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// # fn dummy() -> Result<String,Exception> {
/// let mut interp = Interp::default();
/// let expr = Value::from("2 + 2");
/// let sum = interp.expr(&expr)?.as_int()?;
///
/// assert_eq!(sum, 4);
/// # Ok("dummy".to_string())
/// # }
/// ```
#[inline]
pub fn expr(&mut self, expr: &Value) -> MoltResult {
// Evaluate the expression and set the errorInfo/errorCode.
let result = expr::expr(self, expr);
if let Err(exception) = &result {
self.set_global_error_data(exception.error_data())?;
}
result
}
/// Evaluates a boolean [Molt expression](https://wduquette.github.io/molt/ref/expr.html)
/// and returns its value, or an error if it couldn't be interpreted as a boolean.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// # fn dummy() -> Result<String,Exception> {
/// let mut interp = Interp::default();
///
/// let expr = Value::from("1 < 2");
/// let flag: bool = interp.expr_bool(&expr)?;
///
/// assert!(flag);
/// # Ok("dummy".to_string())
/// # }
/// ```
#[inline]
pub fn expr_bool(&mut self, expr: &Value) -> Result<bool, Exception> {
self.expr(expr)?.as_bool()
}
/// Evaluates a [Molt expression](https://wduquette.github.io/molt/ref/expr.html)
/// and returns its value as an integer, or an error if it couldn't be interpreted as an
/// integer.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// # fn dummy() -> Result<String,Exception> {
/// let mut interp = Interp::default();
///
/// let expr = Value::from("1 + 2");
/// let val: MoltInt = interp.expr_int(&expr)?;
///
/// assert_eq!(val, 3);
/// # Ok("dummy".to_string())
/// # }
/// ```
#[inline]
pub fn expr_int(&mut self, expr: &Value) -> Result<MoltInt, Exception> {
self.expr(expr)?.as_int()
}
/// Evaluates a [Molt expression](https://wduquette.github.io/molt/ref/expr.html)
/// and returns its value as a float, or an error if it couldn't be interpreted as a
/// float.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// # fn dummy() -> Result<String,Exception> {
/// let mut interp = Interp::default();
///
/// let expr = Value::from("1.1 + 2.2");
/// let val: MoltFloat = interp.expr_float(&expr)?;
///
/// assert_eq!(val, 3.3);
/// # Ok("dummy".to_string())
/// # }
/// ```
#[inline]
pub fn expr_float(&mut self, expr: &Value) -> Result<MoltFloat, Exception> {
self.expr(expr)?.as_float()
}
//--------------------------------------------------------------------------------------------
// Variable Handling
/// Retrieves the value of the named variable in the current scope. The `var_name` may
/// name a scalar variable or an array element. This is the normal way to retrieve the
/// value of a variable named by a command argument.
///
/// Returns an error if the variable is a scalar and the name names an array element,
/// and vice versa.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a" using a script.
/// interp.eval("set a 1")?;
///
/// // The value of the scalar variable "a".
/// let val = interp.var(&Value::from("a"))?;
/// assert_eq!(val.as_str(), "1");
///
/// // Set the value of the array element "b(1)" using a script.
/// interp.eval("set b(1) Howdy")?;
///
/// // The value of the array element "b(1)":
/// let val = interp.var(&Value::from("b(1)"))?;
/// assert_eq!(val.as_str(), "Howdy");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn var(&self, var_name: &Value) -> MoltResult {
let var_name = &*var_name.as_var_name();
match var_name.index() {
Some(index) => self.element(var_name.name(), index),
None => self.scalar(var_name.name()),
}
}
/// Returns 1 if the named variable is defined and exists, and 0 otherwise.
#[inline]
pub fn var_exists(&self, var_name: &Value) -> bool {
let var_name = &*var_name.as_var_name();
match var_name.index() {
Some(index) => self.scopes.elem_exists(var_name.name(), index),
None => self.scopes.exists(var_name.name()),
}
}
/// Sets the value of the variable in the current scope. The `var_name` may name a
/// scalar variable or an array element. This is the usual way to assign a value to
/// a variable named by a command argument.
///
/// Returns an error if the variable is scalar and the name names an array element,
/// and vice-versa.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a"
/// let scalar = Value::from("a"); // The variable name
/// interp.set_var(&scalar, Value::from("1"))?;
/// assert_eq!(interp.var(&scalar)?.as_str(), "1");
///
/// // Set the value of the array element "b(1)":
/// let element = Value::from("b(1)"); // The variable name
/// interp.set_var(&element, Value::from("howdy"))?;
/// assert_eq!(interp.var(&element)?.as_str(), "howdy");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn set_var(&mut self, var_name: &Value, value: Value) -> Result<(), Exception> {
let var_name = &*var_name.as_var_name();
match var_name.index() {
Some(index) => self.set_element(var_name.name(), index, value),
None => self.set_scalar(var_name.name(), value),
}
}
/// Sets the value of the variable in the current scope, return its value. The `var_name`
/// may name a
/// scalar variable or an array element. This is the usual way to assign a value to
/// a variable named by a command argument when the command is expected to return the
/// value.
///
/// Returns an error if the variable is scalar and the name names an array element,
/// and vice-versa.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a"
/// let scalar = Value::from("a"); // The variable name
/// assert_eq!(interp.set_var_return(&scalar, Value::from("1"))?.as_str(), "1");
///
/// // Set the value of the array element "b(1)":
/// let element = Value::from("b(1)"); // The variable name
/// interp.set_var(&element, Value::from("howdy"))?;
/// assert_eq!(interp.set_var_return(&element, Value::from("1"))?.as_str(), "1");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn set_var_return(&mut self, var_name: &Value, value: Value) -> MoltResult {
let var_name = &*var_name.as_var_name();
match var_name.index() {
Some(index) => self.set_element_return(var_name.name(), index, value),
None => self.set_scalar_return(var_name.name(), value),
}
}
/// Retrieves the value of the named scalar variable in the current scope.
///
/// Returns an error if the variable is not found, or if the variable is an array variable.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a" using a script.
/// interp.eval("set a 1")?;
///
/// // The value of the scalar variable "a".
/// let val = interp.scalar("a")?;
/// assert_eq!(val.as_str(), "1");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn scalar(&self, name: &str) -> MoltResult {
self.scopes.get(name)
}
/// Sets the value of the named scalar variable in the current scope, creating the variable
/// if necessary.
///
/// Returns an error if the variable exists and is an array variable.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a"
/// interp.set_scalar("a", Value::from("1"))?;
/// assert_eq!(interp.scalar("a")?.as_str(), "1");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn set_scalar(&mut self, name: &str, value: Value) -> Result<(), Exception> {
self.scopes.set(name, value)
}
/// Sets the value of the named scalar variable in the current scope, creating the variable
/// if necessary, and returning the value.
///
/// Returns an error if the variable exists and is an array variable.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a"
/// assert_eq!(interp.set_scalar_return("a", Value::from("1"))?.as_str(), "1");
/// # molt_ok!()
/// # }
#[inline]
pub fn set_scalar_return(&mut self, name: &str, value: Value) -> MoltResult {
// Clone the value, since we'll be returning it out again.
self.scopes.set(name, value.clone())?;
Ok(value)
}
/// Retrieves the value of the named array element in the current scope.
///
/// Returns an error if the element is not found, or the variable is not an
/// array variable.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the array element variable "a(1)" using a script.
/// interp.eval("set a(1) Howdy")?;
///
/// // The value of the array element "a(1)".
/// let val = interp.element("a", "1")?;
/// assert_eq!(val.as_str(), "Howdy");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn element(&self, name: &str, index: &str) -> MoltResult {
self.scopes.get_elem(name, index)
}
/// Sets the value of an array element in the current scope, creating the variable
/// if necessary.
///
/// Returns an error if the variable exists and is not an array variable.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a"
/// interp.set_element("b", "1", Value::from("xyz"))?;
/// assert_eq!(interp.element("b", "1")?.as_str(), "xyz");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn set_element(
&mut self,
name: &str,
index: &str,
value: Value,
) -> Result<(), Exception> {
self.scopes.set_elem(name, index, value)
}
/// Sets the value of an array element in the current scope, creating the variable
/// if necessary, and returning the value.
///
/// Returns an error if the variable exists and is not an array variable.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// // Set the value of the scalar variable "a"
/// assert_eq!(interp.set_element_return("b", "1", Value::from("xyz"))?.as_str(), "xyz");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn set_element_return(
&mut self,
name: &str,
index: &str,
value: Value,
) -> MoltResult {
// Clone the value, since we'll be returning it out again.
self.scopes.set_elem(name, index, value.clone())?;
Ok(value)
}
/// Unsets a variable, whether scalar or array, given its name in the current scope. For
/// arrays this is the name of the array proper, e.g., `myArray`, not the name of an
/// element, e.g., `myArray(1)`.
///
/// It is _not_ an error to unset a variable that doesn't exist.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// interp.set_scalar("a", Value::from("1"))?;
/// interp.set_element("b", "1", Value::from("2"))?;
///
/// interp.unset("a"); // Unset scalar
/// interp.unset("b"); // Unset entire array
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn unset(&mut self, name: &str) {
self.scopes.unset(name);
}
/// Unsets the value of the named variable or array element in the current scope.
///
/// It is _not_ an error to unset a variable that doesn't exist.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// let scalar = Value::from("a");
/// let array = Value::from("b");
/// let elem = Value::from("b(1)");
///
/// interp.unset_var(&scalar); // Unset scalar
/// interp.unset_var(&elem); // Unset array element
/// interp.unset_var(&array); // Unset entire array
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn unset_var(&mut self, name: &Value) {
let var_name = name.as_var_name();
if let Some(index) = var_name.index() {
self.unset_element(var_name.name(), index);
} else {
self.unset(var_name.name());
}
}
/// Unsets a single element in an array given the array name and index.
///
/// It is _not_ an error to unset an array element that doesn't exist.
///
/// # Example
///
/// ```
/// use molt::types::*;
/// use molt::Interp;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// interp.set_element("b", "1", Value::from("2"))?;
///
/// interp.unset_element("b", "1");
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn unset_element(&mut self, array_name: &str, index: &str) {
self.scopes.unset_element(array_name, index);
}
/// Gets a list of the names of the variables that are visible in the current scope.
/// The list includes the names of array variables but not elements within them.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
///
/// # let mut interp = Interp::default();
/// for name in interp.vars_in_scope() {
/// println!("Found variable: {}", name);
/// }
/// ```
#[inline]
pub fn vars_in_scope(&self) -> MoltList {
self.scopes.vars_in_scope()
}
/// Gets a list of the names of the variables defined in the global scope.
/// The list includes the names of array variables but not elements within them.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
///
/// # let mut interp = Interp::default();
/// for name in interp.vars_in_global_scope() {
/// println!("Found variable: {}", name);
/// }
/// ```
#[inline]
pub fn vars_in_global_scope(&self) -> MoltList {
self.scopes.vars_in_global_scope()
}
/// Gets a list of the names of the variables defined in the local scope.
/// This does not include variables brought into scope via `global` or `upvar`, or any
/// variables defined in the global scope.
/// The list includes the names of array variables but not elements within them.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
///
/// # let mut interp = Interp::default();
/// for name in interp.vars_in_local_scope() {
/// println!("Found variable: {}", name);
/// }
/// ```
#[inline]
pub fn vars_in_local_scope(&self) -> MoltList {
self.scopes.vars_in_local_scope()
}
/// Links the variable name in the current scope to the given scope.
/// Note: the level is the absolute level, not the level relative to the
/// current stack level, i.e., level=0 is the global scope.
///
/// This method is used to implement the `upvar` command, which allows variables to be
/// passed by name; client code should rarely need to access it directly.
#[inline]
pub fn upvar(&mut self, level: usize, name: &str) {
assert!(level <= self.scopes.current(), "Invalid scope level");
self.scopes.upvar(level, name);
}
/// Pushes a variable scope (i.e., a stack level) onto the scope stack.
///
/// Procs use this to define their local scope. Client code should seldom need to call
/// this directly, but it can be useful in a few cases. For example, the Molt
/// test harness's `test` command runs its body in a local scope as an aid to test
/// cleanup.
///
/// **Note:** a command that pushes a scope must also call `Interp::pop_scope` before it
/// exits!
#[inline]
pub fn push_scope(&mut self) {
self.scopes.push();
}
/// Pops a variable scope (i.e., a stack level) off of the scope stack. Calls to
/// `Interp::push_scope` and `Interp::pop_scope` must exist in pairs.
#[inline]
pub fn pop_scope(&mut self) {
self.scopes.pop();
}
/// Return the current scope level. The global scope is level `0`; each call to
/// `Interp::push_scope` adds a level, and each call to `Interp::pop_scope` removes it.
/// This method is used with `Interp::upvar` to access the caller's scope when a variable
/// is passed by name.
#[inline]
pub fn scope_level(&self) -> usize {
self.scopes.current()
}
///-----------------------------------------------------------------------------------
/// Array Manipulation Methods
///
/// These provide the infrastructure for the `array` command.
/// Unsets an array variable givee its name. Nothing happens if the variable doesn't
/// exist, or if the variable is not an array variable.
#[inline]
pub(crate) fn array_unset(&mut self, array_name: &str) {
self.scopes.array_unset(array_name);
}
/// Determines whether or not the name is the name of an array variable.
///
/// # Example
///
/// ```
/// # use molt::Interp;
/// # use molt::types::*;
/// # use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// # let mut interp = Interp::default();
/// interp.set_scalar("a", Value::from(1))?;
/// interp.set_element("b", "1", Value::from(2));
///
/// assert!(!interp.array_exists("a"));
/// assert!(interp.array_exists("b"));
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn array_exists(&self, array_name: &str) -> bool {
self.scopes.array_exists(array_name)
}
/// Gets a flat vector of the keys and values from the named array. This is used to
/// implement the `array get` command.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
///
/// # let mut interp = Interp::default();
/// for txt in interp.array_get("myArray") {
/// println!("Found index or value: {}", txt);
/// }
/// ```
#[inline]
pub fn array_get(&self, array_name: &str) -> MoltList {
self.scopes.array_get(array_name)
}
/// Merges a flat vector of keys and values into the named array.
/// It's an error if the vector has an odd number of elements, or if the named variable
/// is a scalar. This method is used to implement the `array set` command.
///
/// # Example
///
/// For example, the following Rust code is equivalent to the following Molt code:
///
/// ```tcl
/// # Set individual elements
/// set myArray(a) 1
/// set myArray(b) 2
///
/// # Set all at once
/// array set myArray { a 1 b 2 }
/// ```
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// # use molt::molt_ok;
///
/// # fn dummy() -> MoltResult {
/// # let mut interp = Interp::default();
/// interp.array_set("myArray", &vec!["a".into(), "1".into(), "b".into(), "2".into()])?;
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn array_set(&mut self, array_name: &str, kvlist: &[Value]) -> MoltResult {
if kvlist.len() % 2 == 0 {
self.scopes.array_set(array_name, kvlist)?;
molt_ok!()
} else {
molt_err!("list must have an even number of elements")
}
}
/// Gets a list of the indices of the given array. This is used to implement the
/// `array names` command. If the variable does not exist (or is not an array variable),
/// the method returns the empty list.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
///
/// # let mut interp = Interp::default();
/// for name in interp.array_names("myArray") {
/// println!("Found index : {}", name);
/// }
/// ```
#[inline]
pub fn array_names(&self, array_name: &str) -> MoltList {
self.scopes.array_indices(array_name)
}
/// Gets the number of elements in the named array. Returns 0 if the variable doesn't exist
/// (or isn't an array variable).
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
///
/// # use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// assert_eq!(interp.array_size("a"), 0);
///
/// interp.set_element("a", "1", Value::from("xyz"))?;
/// assert_eq!(interp.array_size("a"), 1);
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn array_size(&self, array_name: &str) -> usize {
self.scopes.array_size(array_name)
}
// //--------------------------------------------------------------------------------------------
// // Command Definition and Handling
// /// Adds a binary command with no related context to the interpreter. This is the normal
// /// way to add most commands.
// ///
// /// If the command needs access to some form of application or context data,
// /// use [`add_context_command`](#method.add_context_command) instead. See the
// /// [module level documentation](index.html) for an overview and examples.
// pub fn add_command(
// &mut self,
// name: &str,
// func: impl Fn(&mut Interp<Ctx>, &[Value]) -> MoltResult + 'static,
// ) {
// self
// .commands
// .insert(name.into(), Rc::new(Command::Native(Box::new(func))));
// }
/// Adds a procedure to the interpreter.
///
/// This is how to add a Molt `proc` to the interpreter. The arguments are the same
/// as for the `proc` command and the `commands::cmd_proc` function.
///
/// TODO: If this method is ever made public, the parameter list validation done
/// in cmd_proc should be moved here.
#[inline]
pub(crate) fn add_proc(&mut self, name: &str, parms: &[Value], body: &Value) {
self.procs.insert(
name.into(),
Rc::new(Procedure { parms: parms.to_owned(), body: body.clone() }),
);
}
/// Determines whether or not the interpreter contains a command with the given
/// name.
#[inline]
pub fn has_proc(&self, name: &str) -> bool {
self.procs.contains_key(name)
}
/// Renames the command.
///
/// **Note:** This does not update procedures that reference the command under the old
/// name. This is intentional: it is a common TCL programming technique to wrap an
/// existing command by renaming it and defining a new command with the old name that
/// calls the original command at its new name.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// use molt::molt_ok;
/// # fn dummy() -> MoltResult {
/// let mut interp = Interp::default();
///
/// interp.rename_command("expr", "=");
///
/// let sum = interp.eval("= {1 + 1}")?.as_int()?;
///
/// assert_eq!(sum, 2);
/// # molt_ok!()
/// # }
/// ```
#[inline]
pub fn rename_proc(&mut self, old_name: &str, new_name: &str) {
if let Some(proc) = self.procs.remove(old_name) {
self.procs.insert(new_name.into(), proc);
}
}
/// Removes the command with the given name.
///
/// This would typically be done when destroying an object command.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// use molt::molt_ok;
///
/// let mut interp = Interp::default();
///
/// interp.remove_command("set"); // You'll be sorry....
///
/// assert!(!interp.has_command("set"));
/// ```
#[inline]
pub fn remove_proc(&mut self, name: &str) {
// // FIRST, get the command's context ID, if any.
// let context_ids = self.commands.get(name).expect("undefined command").context_ids();
// NEXT, If it has a non-empty context ID slice, decrement their references count; and if the reference
// is zero, remove the context.
// for context_id in context_ids {
// if self
// .context_map
// .get_mut(context_id)
// .expect("unknown context ID")
// .decrement()
// {
// self.context_map.remove(context_id);
// }
// }
// FINALLY, remove the command itself.
self.procs.remove(name);
}
/// Gets a vector of the names of the existing commands.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// use molt::molt_ok;
///
/// let mut interp = Interp::default();
///
/// for name in interp.command_names() {
/// println!("Found command: {}", name);
/// }
/// ```
#[inline]
pub fn command_names(&self) -> MoltList {
let mut vec: MoltList =
self.command.native_names.iter().map(|&s| Value::from(s)).collect();
vec.extend(self.command.embedded_names.iter().map(|&s| Value::from(s)));
vec.extend(self.procs.keys().map(Value::from));
vec
}
#[inline]
pub fn native_command_names(&self) -> String {
self.command.native_names.join(", ")
}
#[inline]
pub fn proc_command_names(&self) -> String {
self.procs
.keys()
.map(String::as_str)
.collect::<Vec<&str>>()
.join(", ")
}
/// Returns the body of the named procedure, or an error if the name doesn't
/// name a procedure.
#[inline]
pub fn command_type(&self, cmd_name: &str) -> MoltResult {
match (self.command.fn_type)(cmd_name, self) {
Some(CommandType::Native) => molt_ok!("native"),
Some(CommandType::Proc) => molt_ok!("proc"),
Some(CommandType::Embedded) => molt_ok!(self.name),
None => molt_err!("\"{}\" isn't a command", cmd_name),
}
}
/// Gets a vector of the names of the existing procedures.
///
/// # Example
///
/// ```
/// use molt::Interp;
/// use molt::types::*;
/// use molt::molt_ok;
///
/// let mut interp = Interp::default();
///
/// for name in interp.proc_names() {
/// println!("Found procedure: {}", name);
/// }
/// ```
#[inline]
pub fn proc_names(&self) -> MoltList {
let vec: MoltList =
self.procs.iter().map(|(name, _)| Value::from(name)).collect();
vec
}
/// Returns the body of the named procedure, or an error if the name doesn't
/// name a procedure.
#[inline]
pub fn proc_body(&self, procname: &str) -> MoltResult {
if let Some(proc) = self.procs.get(procname) {
return molt_ok!(proc.body.clone());
}
molt_err!("\"{}\" isn't a procedure", procname)
}
/// Returns a list of the names of the arguments of the named procedure, or an
/// error if the name doesn't name a procedure.
#[inline]
pub fn proc_args(&self, procname: &str) -> MoltResult {
if let Some(proc) = self.procs.get(procname) {
// Note: the item is guaranteed to be parsible as a list of 1 or 2 elements.
let vec: MoltList = proc
.parms
.iter()
.map(|item| item.as_list().expect("invalid proc parms")[0].clone())
.collect();
return molt_ok!(Value::from(vec));
}
molt_err!("\"{}\" isn't a procedure", procname)
}
/// Returns the default value of the named argument of the named procedure, if it has one.
/// Returns an error if the procedure has no such argument, or the `procname` doesn't name
/// a procedure.
#[inline]
pub fn proc_default(
&self,
procname: &str,
arg: &str,
) -> Result<Option<Value>, Exception> {
if let Some(proc) = self.procs.get(procname) {
for argvec in &proc.parms {
let argvec = argvec.as_list()?; // Should never fail
if argvec[0].as_str() == arg {
if argvec.len() == 2 {
return Ok(Some(argvec[1].clone()));
} else {
return Ok(None);
}
}
}
return molt_err!(
"procedure \"{}\" doesn't have an argument \"{}\"",
procname,
arg
);
}
molt_err!("\"{}\" isn't a procedure", procname)
}
//--------------------------------------------------------------------------------------------
// Interpreter Configuration
/// Gets the interpreter's recursion limit: how deep the stack of script evaluations may be.
///
/// A script stack level is added by each nested script evaluation (i.e., by each call)
/// to [`eval`](#method.eval) or [`eval_value`](#method.eval_value).
///
/// # Example
/// ```
/// # use molt::types::*;
/// # use molt::interp::Interp;
/// let mut interp = Interp::default();
/// assert_eq!(interp.recursion_limit(), 1000);
/// ```
#[inline]
pub fn recursion_limit(&self) -> usize {
self.recursion_limit
}
/// Sets the interpreter's recursion limit: how deep the stack of script evaluations may
/// be. The default is 1000.
///
/// A script stack level is added by each nested script evaluation (i.e., by each call)
/// to [`eval`](#method.eval) or [`eval_value`](#method.eval_value).
///
/// # Example
/// ```
/// # use molt::types::*;
/// # use molt::interp::Interp;
/// let mut interp = Interp::default();
/// interp.set_recursion_limit(100);
/// assert_eq!(interp.recursion_limit(), 100);
/// ```
#[inline]
pub fn set_recursion_limit(&mut self, limit: usize) {
self.recursion_limit = limit;
}
//--------------------------------------------------------------------------------------------
// Profiling
/// Unstable; use at own risk.
pub fn profile_save(&mut self, name: &str, start: Instant) {
let dur = Instant::now().duration_since(start).as_nanos();
let rec = self.profile_map.entry(name.into()).or_insert_with(ProfileRecord::new);
rec.count += 1;
rec.nanos += dur;
}
/// Unstable; use at own risk.
pub fn profile_clear(&mut self) {
self.profile_map.clear();
}
/// Unstable; use at own risk.
pub fn profile_dump(&self) {
if self.profile_map.is_empty() {
println!("no profile data");
} else {
for (name, rec) in &self.profile_map {
let avg = rec.nanos / rec.count;
println!("{} nanos {}, count={}", avg, name, rec.count);
}
}
}
//--------------------------------------------------------------------------------------------
// Error control
/// get the current continue on error setting. the default is false.
///
/// # Example
/// ```
/// # use molt::types::*;
/// # use molt::interp::Interp;
/// let mut interp = Interp::default();
/// assert_eq!(interp.continue_on_error(), false);
/// ```
pub fn continue_on_error(&self) -> bool {
self.continue_on_error
}
/// set whether to continue anyway in case of error.
///
/// # Example
/// ```
/// # use molt::types::*;
/// # use molt::interp::Interp;
/// let mut interp = Interp::default();
/// interp.set_continue_on_error(true);
/// assert_eq!(interp.continue_on_error(), true);
/// ```
pub fn set_continue_on_error(&mut self, c: bool) {
self.continue_on_error = c;
}
}
/// How a procedure is defined: as an argument list and a body script.
/// The argument list is a list of Values, and the body is a Value; each will
/// retain its parsed form.
///
/// NOTE: We do not save the procedure's name; the name exists only in the
/// commands table, and can be changed there freely. The procedure truly doesn't
/// know what its name is except when it is being executed.
#[derive(Debug, Clone)]
pub struct Procedure {
/// The procedure's parameter list. Each item in the list is a name or a
/// name/default value pair. (This is verified by the `proc` command.)
parms: MoltList,
/// The procedure's body string, as a Value. As such, it retains both its
/// string value, as needed for introspection, and its parsed Script.
body: Value,
}
impl Procedure {
pub fn execute<Ctx>(&self, interp: &mut Interp<Ctx>, argv: &[Value]) -> MoltResult
where
Ctx: 'static,
{
// FIRST, push the proc's local scope onto the stack.
interp.push_scope();
// NEXT, process the proc's argument list.
let mut argi = 1; // Skip the proc's name
for (speci, spec) in self.parms.iter().enumerate() {
// FIRST, get the parameter as a vector. It should be a list of
// one or two elements.
let vec = &*spec.as_list()?; // Should never fail
assert!(vec.len() == 1 || vec.len() == 2);
// NEXT, if this is the args parameter, give the remaining args,
// if any. Note that "args" has special meaning only if it's the
// final arg spec in the list.
if vec[0].as_str() == "args" && speci == self.parms.len() - 1 {
interp.set_scalar("args", Value::from(&argv[argi..]))?;
// We've processed all of the args
argi = argv.len();
break;
}
// NEXT, do we have a matching argument?
if argi < argv.len() {
// Pair them up
interp.set_scalar(vec[0].as_str(), argv[argi].clone())?;
argi += 1;
continue;
}
// NEXT, do we have a default value?
if vec.len() == 2 {
interp.set_scalar(vec[0].as_str(), vec[1].clone())?;
} else {
// We don't; we're missing a required argument.
return self.wrong_num_args(&argv[0]);
}
}
// NEXT, do we have any arguments left over?
if argi != argv.len() {
return self.wrong_num_args(&argv[0]);
}
// NEXT, evaluate the proc's body, getting the result.
let result = interp.eval_value(&self.body);
// NEXT, pop the scope off of the stack; we're done with it.
interp.pop_scope();
if let Err(mut exception) = result {
// FIRST, handle the return -code, -level protocol
if exception.code() == ResultCode::Return {
exception.decrement_level();
}
return match exception.code() {
ResultCode::Okay => Ok(exception.value()),
ResultCode::Error => Err(exception),
ResultCode::Return => Err(exception), // -level > 0
ResultCode::Break => molt_err!("invoked \"break\" outside of a loop"),
ResultCode::Continue => {
molt_err!("invoked \"continue\" outside of a loop")
}
// TODO: Better error message
ResultCode::Other(_) => molt_err!("unexpected result code."),
};
}
// NEXT, return the computed result.
// Note: no need for special handling for return, break, continue;
// interp.eval() returns only Ok or a real error.
result
}
// Outputs the wrong # args message for the proc. The name is passed in
// because it can be changed via the `rename` command.
fn wrong_num_args(&self, name: &Value) -> MoltResult {
let mut msg = String::new();
msg.push_str("wrong # args: should be \"");
msg.push_str(name.as_str());
for (i, arg) in self.parms.iter().enumerate() {
msg.push(' ');
// "args" has special meaning only in the last place.
if arg.as_str() == "args" && i == self.parms.len() - 1 {
msg.push_str("?arg ...?");
break;
}
let vec = arg.as_list().expect("error in proc arglist validation!");
if vec.len() == 1 {
msg.push_str(vec[0].as_str());
} else {
msg.push('?');
msg.push_str(vec[0].as_str());
msg.push('?');
}
}
msg.push_str("\"");
molt_err!(&msg)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_new() {
let interp = Interp::default();
// Interpreter is not empty
assert!(!interp.command_names().is_empty());
// Note: in theory, we should test here that the normal set of commands is present.
// In fact, that should be tested by the `molt test` suite.
}
#[test]
fn test_eval() {
let mut interp = Interp::default();
assert_eq!(interp.eval("set a 1"), Ok(Value::from("1")));
assert!(ex_match(&interp.eval("error 2"), Exception::molt_err(Value::from("2"))));
assert_eq!(interp.eval("return 3"), Ok(Value::from("3")));
assert!(ex_match(
&interp.eval("break"),
Exception::molt_err(Value::from("invoked \"break\" outside of a loop"))
));
assert!(ex_match(
&interp.eval("continue"),
Exception::molt_err(Value::from("invoked \"continue\" outside of a loop"))
));
}
// Shows that the result is matches the given exception. Ignores the exception's
// ErrorData, if any.
fn ex_match(r: &MoltResult, expected: Exception) -> bool {
// FIRST, if the results are of different types, there's no match.
if let Err(e) = r {
e.code() == expected.code() && e.value() == expected.value()
} else {
false
}
}
#[test]
fn test_eval_value() {
let mut interp = Interp::default();
assert_eq!(interp.eval_value(&Value::from("set a 1")), Ok(Value::from("1")));
assert!(ex_match(
&interp.eval_value(&Value::from("error 2")),
Exception::molt_err(Value::from("2"))
));
assert_eq!(interp.eval_value(&Value::from("return 3")), Ok(Value::from("3")));
assert!(ex_match(
&interp.eval_value(&Value::from("break")),
Exception::molt_err(Value::from("invoked \"break\" outside of a loop"))
));
assert!(ex_match(
&interp.eval_value(&Value::from("continue")),
Exception::molt_err(Value::from("invoked \"continue\" outside of a loop"))
));
}
#[test]
fn test_complete() {
let mut interp = Interp::default();
assert!(interp.complete("abc"));
assert!(interp.complete("a {bc} [def] \"ghi\" xyz"));
assert!(!interp.complete("a {bc"));
assert!(!interp.complete("a [bc"));
assert!(!interp.complete("a \"bc"));
}
#[test]
fn test_expr() {
let mut interp = Interp::default();
assert_eq!(interp.expr(&Value::from("1 + 2")), Ok(Value::from(3)));
assert_eq!(
interp.expr(&Value::from("a + b")),
Err(Exception::molt_err(Value::from("unknown math function \"a\"")))
);
}
#[test]
fn test_expr_bool() {
let mut interp = Interp::default();
assert_eq!(interp.expr_bool(&Value::from("1")), Ok(true));
assert_eq!(interp.expr_bool(&Value::from("0")), Ok(false));
assert_eq!(
interp.expr_bool(&Value::from("a")),
Err(Exception::molt_err(Value::from("unknown math function \"a\"")))
);
}
#[test]
fn test_expr_int() {
let mut interp = Interp::default();
assert_eq!(interp.expr_int(&Value::from("1 + 2")), Ok(3));
assert_eq!(
interp.expr_int(&Value::from("a")),
Err(Exception::molt_err(Value::from("unknown math function \"a\"")))
);
}
#[test]
fn test_expr_float() {
let mut interp = Interp::default();
let val = interp
.expr_float(&Value::from("1.1 + 2.2"))
.expect("floating point value");
assert!((val - 3.3).abs() < 0.001);
assert_eq!(
interp.expr_float(&Value::from("a")),
Err(Exception::molt_err(Value::from("unknown math function \"a\"")))
);
}
#[test]
fn test_recursion_limit() {
let mut interp = Interp::default();
assert_eq!(interp.recursion_limit(), 1000);
interp.set_recursion_limit(100);
assert_eq!(interp.recursion_limit(), 100);
assert!(dbg!(interp.eval("proc myproc {} { myproc }")).is_ok());
assert!(ex_match(
&interp.eval("myproc"),
Exception::molt_err(Value::from(
"too many nested calls to Interp::eval (infinite loop?)"
))
));
}
#[test]
fn context_forgotten_2_commands() {
use crate::prelude::*;
let _interp = Interp::new(
(),
gen_command!(
(),
// native commands
[
// TODO: Requires file access. Ultimately, might go in an extension crate if
// the necessary operations aren't available in core::).
(_SOURCE, cmd_source),
// TODO: Useful for entire programs written in Molt; but not necessarily wanted in
// extension scripts).
(_EXIT, cmd_exit),
// TODO: Developer Tools
(_PARSE, cmd_parse),
(_PDUMP, cmd_pdump),
(_PCLEAR, cmd_pclear),
],
// embedded commands
[("dummy", " ", dummy_cmd, ""), ("dummy2", "", dummy_cmd, ""),],
),
true,
"",
);
}
fn dummy_cmd(_: &mut Interp<()>, _: &[Value]) -> MoltResult {
molt_err!("Not really meant to be called")
}
}