mockforge_reporting/
trend_analysis.rs

1//! Trend analysis for orchestration metrics over time
2
3use crate::pdf::ExecutionReport;
4use crate::{ReportingError, Result};
5use chrono::{DateTime, Duration, Utc};
6use serde::{Deserialize, Serialize};
7
8/// Trend direction
9#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
10#[serde(rename_all = "lowercase")]
11pub enum TrendDirection {
12    Improving,
13    Degrading,
14    Stable,
15    Volatile,
16}
17
18/// Trend report for a metric
19#[derive(Debug, Clone, Serialize, Deserialize)]
20pub struct TrendReport {
21    pub metric_name: String,
22    pub trend: TrendDirection,
23    pub change_percentage: f64,
24    pub current_value: f64,
25    pub previous_value: f64,
26    pub average_value: f64,
27    pub std_deviation: f64,
28    pub data_points: Vec<DataPoint>,
29    pub forecast: Vec<ForecastPoint>,
30    pub anomalies: Vec<AnomalyPoint>,
31}
32
33/// Historical data point
34#[derive(Debug, Clone, Serialize, Deserialize)]
35pub struct DataPoint {
36    pub timestamp: DateTime<Utc>,
37    pub value: f64,
38}
39
40/// Forecasted data point
41#[derive(Debug, Clone, Serialize, Deserialize)]
42pub struct ForecastPoint {
43    pub timestamp: DateTime<Utc>,
44    pub predicted_value: f64,
45    pub confidence_interval: (f64, f64),
46}
47
48/// Anomaly point
49#[derive(Debug, Clone, Serialize, Deserialize)]
50pub struct AnomalyPoint {
51    pub timestamp: DateTime<Utc>,
52    pub value: f64,
53    pub severity: String,
54}
55
56/// Regression result
57#[derive(Debug, Clone, Serialize, Deserialize)]
58pub struct RegressionResult {
59    pub slope: f64,
60    pub intercept: f64,
61    pub r_squared: f64,
62}
63
64/// Trend analyzer
65pub struct TrendAnalyzer {
66    historical_reports: Vec<ExecutionReport>,
67}
68
69impl TrendAnalyzer {
70    /// Create a new trend analyzer
71    pub fn new() -> Self {
72        Self {
73            historical_reports: Vec::new(),
74        }
75    }
76
77    /// Add historical report
78    pub fn add_report(&mut self, report: ExecutionReport) {
79        self.historical_reports.push(report);
80        // Keep sorted by time
81        self.historical_reports.sort_by_key(|r| r.start_time);
82    }
83
84    /// Analyze trends for a metric
85    pub fn analyze_metric(&self, metric_name: &str) -> Result<TrendReport> {
86        if self.historical_reports.is_empty() {
87            return Err(ReportingError::Analysis("No historical data available".to_string()));
88        }
89
90        // Extract metric values
91        let data_points = self.extract_metric_values(metric_name)?;
92
93        if data_points.is_empty() {
94            return Err(ReportingError::Analysis(format!("No data for metric: {}", metric_name)));
95        }
96
97        // Calculate statistics
98        let values: Vec<f64> = data_points.iter().map(|dp| dp.value).collect();
99        let average_value = values.iter().sum::<f64>() / values.len() as f64;
100
101        let variance =
102            values.iter().map(|v| (v - average_value).powi(2)).sum::<f64>() / values.len() as f64;
103        let std_deviation = variance.sqrt();
104
105        // Calculate trend
106        let regression = self.linear_regression(&data_points);
107        let trend = self.determine_trend(&regression, std_deviation);
108
109        // Calculate change percentage
110        let current_value = data_points.last().unwrap().value;
111        let previous_value = if data_points.len() > 1 {
112            data_points[data_points.len() - 2].value
113        } else {
114            current_value
115        };
116
117        let change_percentage = if previous_value != 0.0 {
118            ((current_value - previous_value) / previous_value) * 100.0
119        } else {
120            0.0
121        };
122
123        // Detect anomalies
124        let anomalies = self.detect_anomalies(&data_points, average_value, std_deviation);
125
126        // Generate forecast
127        let forecast = self.generate_forecast(&regression, &data_points, 5);
128
129        Ok(TrendReport {
130            metric_name: metric_name.to_string(),
131            trend,
132            change_percentage,
133            current_value,
134            previous_value,
135            average_value,
136            std_deviation,
137            data_points,
138            forecast,
139            anomalies,
140        })
141    }
142
143    /// Extract metric values from reports
144    fn extract_metric_values(&self, metric_name: &str) -> Result<Vec<DataPoint>> {
145        let mut data_points = Vec::new();
146
147        for report in &self.historical_reports {
148            let value = match metric_name {
149                "error_rate" => report.metrics.error_rate,
150                "avg_latency" => report.metrics.avg_latency_ms,
151                "p95_latency" => report.metrics.p95_latency_ms,
152                "p99_latency" => report.metrics.p99_latency_ms,
153                "total_requests" => report.metrics.total_requests as f64,
154                "failed_requests" => report.metrics.failed_requests as f64,
155                "success_rate" => {
156                    if report.metrics.total_requests > 0 {
157                        report.metrics.successful_requests as f64
158                            / report.metrics.total_requests as f64
159                    } else {
160                        0.0
161                    }
162                }
163                _ => {
164                    return Err(ReportingError::Analysis(format!(
165                        "Unknown metric: {}",
166                        metric_name
167                    )))
168                }
169            };
170
171            data_points.push(DataPoint {
172                timestamp: report.start_time,
173                value,
174            });
175        }
176
177        Ok(data_points)
178    }
179
180    /// Perform linear regression
181    fn linear_regression(&self, data_points: &[DataPoint]) -> RegressionResult {
182        if data_points.len() < 2 {
183            return RegressionResult {
184                slope: 0.0,
185                intercept: 0.0,
186                r_squared: 0.0,
187            };
188        }
189
190        let n = data_points.len() as f64;
191
192        // Convert timestamps to x values (days since first point)
193        let x_values: Vec<f64> = data_points
194            .iter()
195            .map(|dp| (dp.timestamp - data_points[0].timestamp).num_seconds() as f64 / 86400.0)
196            .collect();
197
198        let y_values: Vec<f64> = data_points.iter().map(|dp| dp.value).collect();
199
200        let sum_x: f64 = x_values.iter().sum();
201        let sum_y: f64 = y_values.iter().sum();
202        let sum_xy: f64 = x_values.iter().zip(&y_values).map(|(x, y)| x * y).sum();
203        let sum_xx: f64 = x_values.iter().map(|x| x * x).sum();
204
205        let slope = (n * sum_xy - sum_x * sum_y) / (n * sum_xx - sum_x * sum_x);
206        let intercept = (sum_y - slope * sum_x) / n;
207
208        // Calculate R-squared
209        let mean_y = sum_y / n;
210        let ss_tot: f64 = y_values.iter().map(|y| (y - mean_y).powi(2)).sum();
211        let ss_res: f64 = x_values
212            .iter()
213            .zip(&y_values)
214            .map(|(x, y)| {
215                let predicted = slope * x + intercept;
216                (y - predicted).powi(2)
217            })
218            .sum();
219
220        let r_squared = if ss_tot > 0.0 {
221            1.0 - (ss_res / ss_tot)
222        } else {
223            0.0
224        };
225
226        RegressionResult {
227            slope,
228            intercept,
229            r_squared,
230        }
231    }
232
233    /// Determine trend direction
234    fn determine_trend(&self, regression: &RegressionResult, std_dev: f64) -> TrendDirection {
235        let slope_threshold = std_dev * 0.1;
236
237        if regression.r_squared < 0.5 {
238            // Low correlation - volatile
239            TrendDirection::Volatile
240        } else if regression.slope.abs() < slope_threshold {
241            // Minimal change - stable
242            TrendDirection::Stable
243        } else if regression.slope > 0.0 {
244            // Positive slope - for error rates this is degrading
245            TrendDirection::Degrading
246        } else {
247            // Negative slope - for error rates this is improving
248            TrendDirection::Improving
249        }
250    }
251
252    /// Detect anomalies using statistical methods
253    fn detect_anomalies(
254        &self,
255        data_points: &[DataPoint],
256        mean: f64,
257        std_dev: f64,
258    ) -> Vec<AnomalyPoint> {
259        let mut anomalies = Vec::new();
260        let threshold = 2.0; // 2 standard deviations
261
262        for point in data_points {
263            let z_score = ((point.value - mean) / std_dev).abs();
264
265            if z_score > threshold {
266                let severity = if z_score > 3.0 { "high" } else { "medium" };
267
268                anomalies.push(AnomalyPoint {
269                    timestamp: point.timestamp,
270                    value: point.value,
271                    severity: severity.to_string(),
272                });
273            }
274        }
275
276        anomalies
277    }
278
279    /// Generate forecast using linear regression
280    fn generate_forecast(
281        &self,
282        regression: &RegressionResult,
283        data_points: &[DataPoint],
284        periods: usize,
285    ) -> Vec<ForecastPoint> {
286        let mut forecast = Vec::new();
287
288        if data_points.is_empty() {
289            return forecast;
290        }
291
292        let last_timestamp = data_points.last().unwrap().timestamp;
293        let first_timestamp = data_points[0].timestamp;
294
295        for i in 1..=periods {
296            let future_timestamp = last_timestamp + Duration::days(i as i64);
297            let days_from_start =
298                (future_timestamp - first_timestamp).num_seconds() as f64 / 86400.0;
299
300            let predicted_value = regression.slope * days_from_start + regression.intercept;
301
302            // Simple confidence interval (±2 std errors)
303            let std_error = 0.1; // Simplified - should be calculated from residuals
304            let confidence_interval =
305                (predicted_value - 2.0 * std_error, predicted_value + 2.0 * std_error);
306
307            forecast.push(ForecastPoint {
308                timestamp: future_timestamp,
309                predicted_value,
310                confidence_interval,
311            });
312        }
313
314        forecast
315    }
316
317    /// Get all available metrics
318    pub fn available_metrics(&self) -> Vec<String> {
319        vec![
320            "error_rate".to_string(),
321            "avg_latency".to_string(),
322            "p95_latency".to_string(),
323            "p99_latency".to_string(),
324            "total_requests".to_string(),
325            "failed_requests".to_string(),
326            "success_rate".to_string(),
327        ]
328    }
329
330    /// Analyze all metrics
331    pub fn analyze_all_metrics(&self) -> Result<Vec<TrendReport>> {
332        let mut reports = Vec::new();
333
334        for metric in self.available_metrics() {
335            if let Ok(report) = self.analyze_metric(&metric) {
336                reports.push(report);
337            }
338        }
339
340        Ok(reports)
341    }
342}
343
344impl Default for TrendAnalyzer {
345    fn default() -> Self {
346        Self::new()
347    }
348}
349
350#[cfg(test)]
351mod tests {
352    use super::*;
353    use crate::pdf::ReportMetrics;
354
355    #[test]
356    fn test_trend_analyzer() {
357        let mut analyzer = TrendAnalyzer::new();
358
359        for i in 0..10 {
360            let report = ExecutionReport {
361                orchestration_name: "test".to_string(),
362                start_time: Utc::now() - Duration::days(10 - i),
363                end_time: Utc::now() - Duration::days(10 - i),
364                duration_seconds: 100,
365                status: "Completed".to_string(),
366                total_steps: 5,
367                completed_steps: 5,
368                failed_steps: 0,
369                metrics: ReportMetrics {
370                    total_requests: 1000,
371                    successful_requests: 980,
372                    failed_requests: 20,
373                    avg_latency_ms: 100.0 + i as f64 * 5.0,
374                    p95_latency_ms: 200.0,
375                    p99_latency_ms: 300.0,
376                    error_rate: 0.02,
377                },
378                failures: vec![],
379                recommendations: vec![],
380            };
381
382            analyzer.add_report(report);
383        }
384
385        let trend = analyzer.analyze_metric("avg_latency").unwrap();
386        assert_eq!(trend.metric_name, "avg_latency");
387        assert!(trend.data_points.len() >= 10);
388    }
389}