1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/// Allocation types for the Anachro PC.
///
/// NOTE: This module makes STRONG assumptions that the allocator will be a singleton.
/// This is currently fine, but it is not allowed to make multiple instances of the
/// types within.
use core::{
alloc::Layout,
cell::UnsafeCell,
mem::MaybeUninit,
ops::{Deref, DerefMut},
ptr::NonNull,
sync::atomic::{AtomicU8, Ordering},
mem::{forget, size_of, align_of},
};
use heapless::mpmc::MpMcQueue;
use linked_list_allocator::Heap;
pub static HEAP: AHeap = AHeap::new();
static FREE_Q: FreeQueue = FreeQueue::new();
// AHeap storage goes in a specific section
#[link_section=".aheap.STORAGE"]
static HEAP_BUF: HeapStorage = HeapStorage::new();
// Size is roughly ptr + size + align, so about 3 words.
const FREE_Q_LEN: usize = 128;
/// An Anachro Heap item
pub struct AHeap {
state: AtomicU8,
heap: UnsafeCell<MaybeUninit<Heap>>,
}
// SAFETY: Safety is checked through the `state` member, which uses
// atomic operations to ensure the data is initialized and exclusively
// accessed.
unsafe impl Sync for AHeap {}
impl AHeap {
/// The AHeap is uninitialized. This is the default state.
const UNINIT: u8 = 0;
/// The AHeap is initialized, and no `HeapGuard`s are active.
const INIT_IDLE: u8 = 1;
/// The AHeap is "locked", and cannot currently be retrieved. In MOST cases
/// this also means the heap is initialized, except for the brief period of
/// time while the heap is being initialized.
const BUSY_LOCKED: u8 = 2;
/// Create a new, uninitialized AHeap
const fn new() -> Self {
Self {
state: AtomicU8::new(Self::UNINIT),
heap: UnsafeCell::new(MaybeUninit::uninit()),
}
}
/// Initialize the AHeap.
///
/// This takes care of initializing all contained memory and tracking variables.
/// This function should only be called once, and should be called prior to using
/// the AHeap.
///
/// Returns `Ok(())` if initialization was successful. Returns `Err(())` if the
/// AHeap was previously initialized.
pub fn init(&self) -> Result<(), ()> {
self.state
.compare_exchange(
Self::UNINIT,
Self::BUSY_LOCKED,
Ordering::SeqCst,
Ordering::SeqCst,
)
.map_err(drop)?;
unsafe {
// Create a heap type from the given storage buffer
let heap = HEAP_BUF.take_heap();
// Initialize the Free Queue
FREE_Q.init();
// Initialize the heap
(*self.heap.get()).write(heap);
}
// We have exclusive access, a "store" is okay.
self.state.store(Self::INIT_IDLE, Ordering::SeqCst);
Ok(())
}
pub fn try_lock(&'static self) -> Option<HeapGuard> {
// The heap must be idle
self.state
.compare_exchange(
Self::INIT_IDLE,
Self::BUSY_LOCKED,
Ordering::SeqCst,
Ordering::SeqCst,
)
.ok()?;
// SAFETY: If we were in the INIT_IDLE state, then the heap has been
// initialized (is valid), and no other access exists (mutually exclusive).
unsafe {
let heap = &mut *self.heap.get().cast();
Some(HeapGuard { heap })
}
}
}
struct FreeQueue {
// NOTE: This is because MpMcQueue has non-zero initialized state, which means
// it would reside in .data instead of .bss. This moves initialization to runtime,
// and means that no .data initializer is required
q: UnsafeCell<MaybeUninit<MpMcQueue<FreeBox, FREE_Q_LEN>>>,
}
// SAFETY: Access to the FreeQueue (a singleton) is mediated by the AHeap.state
// tracking variable.
unsafe impl Sync for FreeQueue {}
impl FreeQueue {
/// Create a new, uninitialized FreeQueue
const fn new() -> Self {
Self {
q: UnsafeCell::new(MaybeUninit::uninit()),
}
}
/// Initialize the FreeQueue.
///
/// SAFETY: This function should only ever be called once (usually in the initialization
/// of the AHeap singleton).
unsafe fn init(&self) {
let new = MpMcQueue::new();
self.q
.get()
.cast::<MpMcQueue<FreeBox, FREE_Q_LEN>>()
.write(new);
}
/// Obtain a reference the FreeQueue.
///
/// SAFETY: The free queue MUST have been previously initialized.
unsafe fn get_unchecked(&self) -> &MpMcQueue<FreeBox, FREE_Q_LEN> {
// SAFETY: The MpMcQueue type is Sync, so mutual exclusion is not required
// If the HEAP type has been initialized, so has the FreeQueue singleton,
// so access is valid.
(*self.q.get()).assume_init_ref()
}
}
/// A storage wrapper type for the heap payload.
///
/// The wrapper is required to impl the `Sync` trait
struct HeapStorage {
data: UnsafeCell<[u8; Self::SIZE_BYTES]>,
}
// SAFETY: Access is only provided through raw pointers, and is exclusively accessed
// through AHeap allocation methods.
unsafe impl Sync for HeapStorage {}
/// An Anachro Heap Box Type
pub struct HeapBox<T> {
ptr: *mut T,
}
unsafe impl<T> Send for HeapBox<T> { }
impl<T> Deref for HeapBox<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &*self.ptr }
}
}
impl<T> DerefMut for HeapBox<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *self.ptr }
}
}
impl<T> HeapBox<T> {
/// Create a free_box, with location and layout information necessary
/// to free the box.
///
/// SAFETY: This function creates aliasing pointers for the allocation. It
/// should ONLY be called in the destructor of the HeapBox when deallocation
/// is about to occur, and access to the Box will not be allowed again.
unsafe fn free_box(&mut self) -> FreeBox {
FreeBox {
ptr: NonNull::new_unchecked(self.ptr.cast::<u8>()),
layout: Layout::new::<T>(),
}
}
/// Leak the contents of this box, never to be recovered (probably)
pub fn leak(self) -> &'static mut T {
let mutref = unsafe { &mut *self.ptr };
forget(self);
mutref
}
}
impl<T> Drop for HeapBox<T> {
fn drop(&mut self) {
// Calculate the pointer, size, and layout of this allocation
let free_box = unsafe { self.free_box() };
free_box.box_drop();
}
}
/// An Anachro Heap Array Type
pub struct HeapArray<T> {
count: usize,
ptr: *mut T,
}
unsafe impl<T> Send for HeapArray<T> { }
impl<T> Deref for HeapArray<T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
unsafe { core::slice::from_raw_parts(self.ptr, self.count) }
}
}
impl<T> DerefMut for HeapArray<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { core::slice::from_raw_parts_mut(self.ptr, self.count) }
}
}
impl<T> HeapArray<T> {
/// Create a free_box, with location and layout information necessary
/// to free the box.
///
/// SAFETY: This function creates aliasing pointers for the allocation. It
/// should ONLY be called in the destructor of the HeapBox when deallocation
/// is about to occur, and access to the Box will not be allowed again.
unsafe fn free_box(&mut self) -> FreeBox {
// SAFETY: If we allocated this item, it must have been small enough
// to properly construct a layout. Avoid Layout::array, as it only
// offers a checked method.
let layout = {
let array_size = size_of::<T>() * self.count;
Layout::from_size_align_unchecked(array_size, align_of::<T>())
};
FreeBox {
ptr: NonNull::new_unchecked(self.ptr.cast::<u8>()),
layout,
}
}
/// Leak the contents of this box, never to be recovered (probably)
pub fn leak(self) -> &'static mut [T] {
let mutref = unsafe { core::slice::from_raw_parts_mut(self.ptr, self.count) };
forget(self);
mutref
}
}
impl<T> Drop for HeapArray<T> {
fn drop(&mut self) {
// Calculate the pointer, size, and layout of this allocation
let free_box = unsafe { self.free_box() };
free_box.box_drop();
}
}
/// A type representing a request to free a given allocation of memory.
struct FreeBox {
ptr: NonNull<u8>,
layout: Layout,
}
impl FreeBox {
fn box_drop(self) {
// Attempt to get exclusive access to the heap
if let Some(mut h) = HEAP.try_lock() {
// If we can access the heap directly, then immediately free this memory
unsafe {
h.deref_mut().deallocate(self.ptr, self.layout);
}
} else {
// If not, try to store the allocation into the free list, and it will be
// reclaimed before the next alloc.
//
// SAFETY: A HeapBox can only be created if the Heap, and by extension the
// FreeQueue, has been previously initialized
let free_q = unsafe { FREE_Q.get_unchecked() };
// If the free list is completely full, for now, just panic.
defmt::unwrap!(free_q.enqueue(self).map_err(drop), "Free list is full!");
}
}
}
/// A guard type that provides mutually exclusive access to the allocator as
/// long as the guard is held.
pub struct HeapGuard {
heap: &'static mut AHeap,
}
// Public HeapGuard methods
impl HeapGuard {
/// The free space (in bytes) available to the allocator
pub fn free_space(&self) -> usize {
self.deref().free()
}
/// The used space (in bytes) available to the allocator
pub fn used_space(&self) -> usize {
self.deref().used()
}
fn clean_allocs(&mut self) {
// First, grab the Free Queue.
//
// SAFETY: A HeapGuard can only be created if the Heap, and by extension the
// FreeQueue, has been previously initialized
let free_q = unsafe { FREE_Q.get_unchecked() };
// Then, free all pending memory in order to maximize space available.
while let Some(FreeBox { ptr, layout }) = free_q.dequeue() {
// SAFETY: We have mutually exclusive access to the allocator, and
// the pointer and layout are correctly calculated by the relevant
// FreeBox types.
unsafe {
self.deref_mut().deallocate(ptr, layout);
}
}
}
/// Attempt to allocate a HeapBox using the allocator
///
/// If space was available, the allocation will be returned. If not, an
/// error will be returned
pub fn alloc_box<T>(&mut self, data: T) -> Result<HeapBox<T>, ()> {
// Clean up any pending allocs
self.clean_allocs();
// Then, attempt to allocate the requested T.
let nnu8 = self.deref_mut().allocate_first_fit(Layout::new::<T>())?;
let ptr = nnu8.as_ptr().cast::<T>();
// And initialize it with the contents given to us
unsafe {
ptr.write(data);
}
Ok(HeapBox { ptr })
}
/// Attempt to allocate a HeapArray using the allocator
///
/// If space was available, the allocation will be returned. If not, an
/// error will be returned
pub fn alloc_box_array<T: Copy + ?Sized>(&mut self, data: T, count: usize) -> Result<HeapArray<T>, ()> {
// Clean up any pending allocs
self.clean_allocs();
// Then figure out the layout of the requested array. This call fails
// if the total size exceeds ISIZE_MAX, which is exceedingly unlikely
// (unless the caller calculated something wrong)
let layout = Layout::array::<T>(count).map_err(drop)?;
// Then, attempt to allocate the requested T.
let nnu8 = self.deref_mut().allocate_first_fit(layout)?;
let ptr = nnu8.as_ptr().cast::<T>();
// And initialize it with the contents given to us
unsafe {
for i in 0..count {
ptr.add(i).write(data);
}
}
Ok(HeapArray { ptr, count })
}
}
// Private HeapGuard methods.
//
// NOTE: These are NOT impls of the Deref/DerefMut traits, as I don't actually
// want those methods to be available to downstream users of the HeapGuard
// type. For now, I'd like them to only use the "public" allocation interfaces.
impl HeapGuard {
fn deref(&self) -> &Heap {
// SAFETY: If we have a HeapGuard, we have single access.
unsafe { (*self.heap.heap.get()).assume_init_ref() }
}
fn deref_mut(&mut self) -> &mut Heap {
// SAFETY: If we have a HeapGuard, we have single access.
unsafe { (*self.heap.heap.get()).assume_init_mut() }
}
}
impl Drop for HeapGuard {
fn drop(&mut self) {
// A HeapGuard represents exclusive access to the AHeap. Because of
// this, a regular store is okay.
self.heap.state.store(AHeap::INIT_IDLE, Ordering::SeqCst);
}
}
impl HeapStorage {
const SIZE_KB: usize = 64;
const SIZE_BYTES: usize = Self::SIZE_KB * 1024;
/// Create a new uninitialized storage buffer.
const fn new() -> Self {
Self {
data: UnsafeCell::new([0u8; Self::SIZE_BYTES]),
}
}
/// Obtain the starting address and total size of the storage buffer.
fn addr_sz(&self) -> (usize, usize) {
let ptr = self.data.get();
let addr = ptr as usize;
(addr, Self::SIZE_BYTES)
}
/// Create a Heap object, using the storage contents as the heap memory range.
///
/// SAFETY: This method should only be called once, typically in the
/// initialization of the AHeap object.
unsafe fn take_heap(&self) -> Heap {
let mut heap = Heap::empty();
let (addr, size) = HEAP_BUF.addr_sz();
heap.init(addr, size);
heap
}
}