1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
use std::{
fs::{File, OpenOptions},
io, mem,
ops::{Deref, DerefMut},
os::fd::AsRawFd,
path::Path,
ptr, slice,
sync::atomic::Ordering,
};
use crate::{
error::MmapVecError,
stats::{COUNT_ACTIVE_SEGMENT, COUNT_FTRUNCATE_FAILED, COUNT_MMAP_FAILED, COUNT_MUNMAP_FAILED},
utils::page_size,
};
/// Segment is a constant slice of type T that is memory mapped to disk.
///
/// It is the basic building block of memory mapped data structure.
///
/// It cannot growth / shrink.
#[derive(Debug)]
pub struct Segment<T> {
addr: *mut T,
len: usize,
capacity: usize,
}
impl<T> Segment<T> {
/// Create a zero size segment.
#[inline(always)]
pub const fn null() -> Self {
Self {
addr: std::ptr::null_mut(),
len: 0,
capacity: 0,
}
}
/// Memory map a segment to disk.
///
/// File will be created and init with computed capacity.
pub fn open_rw<P: AsRef<Path>>(path: P, capacity: usize) -> io::Result<Self> {
if capacity == 0 {
return Ok(Self::null());
}
let file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.open(&path)?;
// Fill the file with 0
unsafe { ftruncate::<T>(&file, capacity) }?;
// Map the block
let addr = unsafe { mmap(&file, capacity) }?;
Ok(Self {
addr,
len: 0,
capacity,
})
}
/// Currently used segment size.
#[inline(always)]
pub fn capacity(&self) -> usize {
self.capacity
}
/// Shortens the segment, keeping the first `new_len` elements and dropping
/// the rest.
pub fn truncate(&mut self, new_len: usize) {
if new_len > self.len {
return;
}
unsafe {
let remaining_len = self.len - new_len;
let items = ptr::slice_from_raw_parts_mut(self.addr.add(new_len), remaining_len);
self.set_len(new_len);
ptr::drop_in_place(items);
}
}
/// Remove `delete_count` element at beginning of the segment.
///
/// Element will be drop in place.
///
/// If delete count is greater than the segment len, then this call will be
/// equivalent to calling `clear` function.
pub fn truncate_first(&mut self, delete_count: usize) {
let new_len = self.len.saturating_add_signed(-(delete_count as isize));
if new_len == 0 {
self.clear()
} else {
unsafe {
let items = slice::from_raw_parts_mut(self.addr, delete_count);
ptr::drop_in_place(items);
ptr::copy(self.addr.add(delete_count), self.addr, new_len);
self.set_len(new_len);
}
}
}
/// Clears the segment, removing all values.
#[inline]
pub fn clear(&mut self) {
unsafe {
let items = slice::from_raw_parts_mut(self.addr, self.len);
self.set_len(0);
ptr::drop_in_place(items);
}
}
/// Forces the length of the segment to `new_len`.
#[allow(clippy::missing_safety_doc)]
#[inline(always)]
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len;
}
/// Bytes use on disk for this segment.
#[inline(always)]
pub fn disk_size(&self) -> usize {
self.capacity * mem::size_of::<T>()
}
/// Try to add new element to the segment.
///
/// If the segment is already full, value will be return in `Err`.
#[inline]
pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
if self.len == self.capacity {
return Err(value);
}
unsafe {
let dst = self.addr.add(self.len);
ptr::write(dst, value);
}
self.len += 1;
Ok(())
}
/// Remove last element of the segment and reduce its capacity.
///
/// Value will be return if segment is not empty.
#[inline]
pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {
return None;
}
self.len -= 1;
unsafe {
let src = self.addr.add(self.len);
Some(ptr::read(src))
}
}
/// Move data contained in `other` segment to the end of current segment.
///
/// ```rust
/// # use mmap_vec::Segment;
/// let mut s1 = Segment::<i32>::open_rw("test_extend_from_segment_1", 2).unwrap();
/// let mut s2 = Segment::<i32>::open_rw("test_extend_from_segment_2", 5).unwrap();
///
/// s1.push_within_capacity(7);
/// s1.push_within_capacity(-3);
/// s2.push_within_capacity(-4);
/// s2.push_within_capacity(37);
///
/// assert_eq!(&s1[..], [7, -3]);
/// assert_eq!(&s2[..], [-4, 37]);
///
/// s2.extend_from_segment(s1);
/// assert_eq!(&s2[..], [-4, 37, 7, -3]);
/// ```
pub fn extend_from_segment(&mut self, mut other: Segment<T>) {
let new_len = other.len + self.len;
assert!(
new_len <= self.capacity,
"New segment is too small: new_len={}, capacity={}",
new_len,
self.capacity
);
unsafe {
ptr::copy_nonoverlapping(other.addr, self.addr.add(self.len), other.len);
self.set_len(new_len);
other.set_len(0);
};
}
/// Resize the segment without copying data.
///
/// Idea is to:
/// 1. Unmap the region without dropping its content.
/// 2. Calling `ftruncate` to grow the file.
/// 3. Remapping the region and update segment attribute.
///
/// # Safety
///
/// If there is an I/O error after un-mapping the segment, then drop will never have been called on unmapped data.
///
/// This can happen for example if disk is full.
///
/// If no special treatment has to be done when dropping data, this function can be considered as "safe".
/// This function can significantly improve performances in the case data are "simple".
pub unsafe fn reserve_in_place<P: AsRef<Path>>(
&mut self,
path: P,
additional: usize,
) -> Result<(), MmapVecError> {
let mut new_capacity = self.len + additional;
if self.capacity < new_capacity {
// Round to upper page new capacity
let page_size = page_size();
let page_capacity = page_size / mem::size_of::<T>();
if new_capacity % page_capacity != 0 {
new_capacity += page_capacity - (new_capacity % page_capacity);
}
// Extract address from inner struct.
// If one of the following call fail, it will avoid multiple free / accessing un-mapped region.
let addr = mem::replace(&mut self.addr, ptr::null_mut());
let capacity = mem::replace(&mut self.capacity, 0);
let len = mem::replace(&mut self.len, 0);
// unmap region
munmap(addr, capacity)?;
// Grow file
let file = OpenOptions::new()
.read(true)
.write(true)
.create(true)
.open(path)?;
ftruncate::<T>(&file, new_capacity)?;
// Re-map region
self.addr = mmap(&file, new_capacity)?;
self.capacity = new_capacity;
self.len = len;
}
Ok(())
}
/// Inform the kernel that the complete segment will be access in a near future.
///
/// All underlying pages should be load in RAM.
///
/// This function is only a wrapper above `libc::madvise`.
///
/// Will panic if `libc::madvise` return an error.
pub fn advice_prefetch_all_pages(&self) {
if self.addr.is_null() || self.len == 0 {
return;
}
let madvise_code = unsafe {
libc::madvise(
self.addr.cast(),
self.len * mem::size_of::<T>(),
libc::MADV_WILLNEED,
)
};
assert_eq!(
madvise_code,
0,
"madvise error: {}",
io::Error::last_os_error()
);
}
/// Inform the kernel that underlying page for `index` will be access in a near future.
///
/// This function is only a wrapper above `libc::madvise`.
pub fn advice_prefetch_page_at(&self, index: usize) {
if self.addr.is_null() || index >= self.len {
return;
}
let page_size = page_size();
let page_mask = !(page_size.wrapping_add_signed(-1));
let madvise_code = unsafe {
libc::madvise(
(self.addr.add(index) as usize & page_mask) as *mut libc::c_void,
page_size,
libc::MADV_WILLNEED,
)
};
assert_eq!(
madvise_code,
0,
"madvise error: {}",
io::Error::last_os_error()
);
}
}
impl<T> Deref for Segment<T> {
type Target = [T];
#[inline(always)]
fn deref(&self) -> &Self::Target {
unsafe { slice::from_raw_parts(self.addr, self.len) }
}
}
impl<T> DerefMut for Segment<T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { slice::from_raw_parts_mut(self.addr, self.len) }
}
}
impl<T> Drop for Segment<T> {
fn drop(&mut self) {
if self.len > 0 {
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.addr, self.len)) }
}
if !self.addr.is_null() {
let _ = unsafe { munmap(self.addr, self.capacity) };
}
}
}
unsafe impl<T> Send for Segment<T> {}
unsafe impl<T> Sync for Segment<T> {}
unsafe fn ftruncate<T>(file: &File, capacity: usize) -> io::Result<()> {
let segment_size = capacity * mem::size_of::<T>();
let fd = file.as_raw_fd();
if libc::ftruncate(fd, segment_size as libc::off_t) != 0 {
COUNT_FTRUNCATE_FAILED.fetch_add(1, Ordering::Relaxed);
Err(io::Error::last_os_error())
} else {
Ok(())
}
}
unsafe fn mmap<T>(file: &File, capacity: usize) -> io::Result<*mut T> {
let segment_size = capacity * mem::size_of::<T>();
// It is safe to not keep a reference to the initial file descriptor.
// See: https://stackoverflow.com/questions/17490033/do-i-need-to-keep-a-file-open-after-calling-mmap-on-it
let fd = file.as_raw_fd();
let addr = libc::mmap(
std::ptr::null_mut(),
segment_size as libc::size_t,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_SHARED,
fd,
0,
);
if addr == libc::MAP_FAILED {
COUNT_MMAP_FAILED.fetch_add(1, Ordering::Relaxed);
Err(io::Error::last_os_error())
} else {
COUNT_ACTIVE_SEGMENT.fetch_add(1, Ordering::Relaxed);
Ok(addr.cast())
}
}
unsafe fn munmap<T>(addr: *mut T, capacity: usize) -> io::Result<()> {
debug_assert!(!addr.is_null());
debug_assert!(capacity > 0);
let unmap_code = libc::munmap(addr.cast(), capacity * mem::size_of::<T>());
if unmap_code != 0 {
COUNT_MUNMAP_FAILED.fetch_add(1, Ordering::Relaxed);
Err(io::Error::last_os_error())
} else {
COUNT_ACTIVE_SEGMENT.fetch_sub(1, Ordering::Relaxed);
Ok(())
}
}