1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// Copyright by contributors to this project.
// SPDX-License-Identifier: (Apache-2.0 OR MIT)
use crate::error::IntoAnyError;
use alloc::vec;
use alloc::vec::Vec;
use core::{
fmt::{self, Debug},
ops::Deref,
};
use mls_rs_codec::{MlsDecode, MlsEncode, MlsSize};
use zeroize::{ZeroizeOnDrop, Zeroizing};
mod cipher_suite;
pub use self::cipher_suite::*;
#[cfg(feature = "test_suite")]
pub mod test_suite;
#[derive(Clone, PartialEq, Eq, MlsSize, MlsEncode, MlsDecode)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
/// Ciphertext produced by [`CipherSuiteProvider::hpke_seal`]
pub struct HpkeCiphertext {
#[mls_codec(with = "mls_rs_codec::byte_vec")]
#[cfg_attr(feature = "serde", serde(with = "crate::vec_serde"))]
pub kem_output: Vec<u8>,
#[mls_codec(with = "mls_rs_codec::byte_vec")]
#[cfg_attr(feature = "serde", serde(with = "crate::vec_serde"))]
pub ciphertext: Vec<u8>,
}
impl Debug for HpkeCiphertext {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("HpkeCiphertext")
.field("kem_output", &crate::debug::pretty_bytes(&self.kem_output))
.field("ciphertext", &crate::debug::pretty_bytes(&self.ciphertext))
.finish()
}
}
/// Byte representation of an HPKE public key. For ciphersuites using elliptic curves,
/// the public key should be represented in the uncompressed format.
#[derive(Clone, PartialEq, Eq, Hash, PartialOrd, Ord, MlsSize, MlsDecode, MlsEncode)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[cfg_attr(
all(feature = "ffi", not(test)),
safer_ffi_gen::ffi_type(clone, opaque)
)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct HpkePublicKey(
#[mls_codec(with = "mls_rs_codec::byte_vec")]
#[cfg_attr(feature = "serde", serde(with = "crate::vec_serde"))]
Vec<u8>,
);
impl Debug for HpkePublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
crate::debug::pretty_bytes(&self.0)
.named("HpkePublicKey")
.fmt(f)
}
}
impl From<Vec<u8>> for HpkePublicKey {
fn from(data: Vec<u8>) -> Self {
Self(data)
}
}
impl From<HpkePublicKey> for Vec<u8> {
fn from(data: HpkePublicKey) -> Self {
data.0
}
}
impl Deref for HpkePublicKey {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AsRef<[u8]> for HpkePublicKey {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
/// Byte representation of an HPKE secret key.
#[derive(Clone, PartialEq, Eq, MlsSize, MlsEncode, MlsDecode, ZeroizeOnDrop)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[cfg_attr(
all(feature = "ffi", not(test)),
safer_ffi_gen::ffi_type(clone, opaque)
)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct HpkeSecretKey(
#[mls_codec(with = "mls_rs_codec::byte_vec")]
#[cfg_attr(feature = "serde", serde(with = "crate::vec_serde"))]
Vec<u8>,
);
impl Debug for HpkeSecretKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
crate::debug::pretty_bytes(&self.0)
.named("HpkeSecretKey")
.fmt(f)
}
}
impl From<Vec<u8>> for HpkeSecretKey {
fn from(data: Vec<u8>) -> Self {
Self(data)
}
}
impl Deref for HpkeSecretKey {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AsRef<[u8]> for HpkeSecretKey {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
/// The HPKE context for sender outputted by [hpke_setup_s](CipherSuiteProvider::hpke_setup_s).
/// The context internally stores the secrets generated by [hpke_setup_s](CipherSuiteProvider::hpke_setup_s).
///
/// This trait corresponds to ContextS from RFC 9180.
#[cfg_attr(not(mls_build_async), maybe_async::must_be_sync)]
#[cfg_attr(all(target_arch = "wasm32", mls_build_async), maybe_async::must_be_async(?Send))]
#[cfg_attr(
all(not(target_arch = "wasm32"), mls_build_async),
maybe_async::must_be_async
)]
pub trait HpkeContextS {
type Error: IntoAnyError;
/// Encrypt `data` using the cipher key of the context with optional `aad`.
/// This function should internally increment the sequence number.
async fn seal(&mut self, aad: Option<&[u8]>, data: &[u8]) -> Result<Vec<u8>, Self::Error>;
/// Export a secret from the context for the given `exporter_context`.
async fn export(&self, exporter_context: &[u8], len: usize) -> Result<Vec<u8>, Self::Error>;
}
/// The HPKE context for receiver outputted by [hpke_setup_r](CipherSuiteProvider::hpke_setup_r).
/// The context internally stores secrets received from the sender by [hpke_setup_r](CipherSuiteProvider::hpke_setup_r).
///
/// This trait corresponds to ContextR from RFC 9180.
#[cfg_attr(not(mls_build_async), maybe_async::must_be_sync)]
#[cfg_attr(all(target_arch = "wasm32", mls_build_async), maybe_async::must_be_async(?Send))]
#[cfg_attr(
all(not(target_arch = "wasm32"), mls_build_async),
maybe_async::must_be_async
)]
pub trait HpkeContextR {
type Error: IntoAnyError;
/// Decrypt `ciphertext` using the cipher key of the context with optional `aad`.
/// This function should internally increment the sequence number.
async fn open(&mut self, aad: Option<&[u8]>, ciphertext: &[u8])
-> Result<Vec<u8>, Self::Error>;
/// Export a secret from the context for the given `exporter_context`.
async fn export(&self, exporter_context: &[u8], len: usize) -> Result<Vec<u8>, Self::Error>;
}
/// Byte representation of a signature public key. For ciphersuites using elliptic curves,
/// the public key should be represented in the uncompressed format.
#[derive(Clone, PartialEq, Eq, Hash, Ord, PartialOrd, MlsSize, MlsEncode, MlsDecode)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[cfg_attr(all(feature = "ffi", not(test)), ::safer_ffi_gen::ffi_type(opaque))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SignaturePublicKey(
#[mls_codec(with = "mls_rs_codec::byte_vec")]
#[cfg_attr(feature = "serde", serde(with = "crate::vec_serde"))]
Vec<u8>,
);
impl Debug for SignaturePublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
crate::debug::pretty_bytes(&self.0)
.named("SignaturePublicKey")
.fmt(f)
}
}
#[cfg_attr(all(feature = "ffi", not(test)), ::safer_ffi_gen::safer_ffi_gen)]
impl SignaturePublicKey {
pub fn new(bytes: Vec<u8>) -> Self {
bytes.into()
}
pub fn new_slice(data: &[u8]) -> Self {
Self(data.to_vec())
}
pub fn as_bytes(&self) -> &[u8] {
&self.0
}
}
impl Deref for SignaturePublicKey {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AsRef<[u8]> for SignaturePublicKey {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl From<Vec<u8>> for SignaturePublicKey {
fn from(data: Vec<u8>) -> Self {
SignaturePublicKey(data)
}
}
/// Byte representation of a signature key.
#[cfg_attr(
all(feature = "ffi", not(test)),
::safer_ffi_gen::ffi_type(clone, opaque)
)]
#[derive(Clone, PartialEq, Eq, ZeroizeOnDrop, MlsSize, MlsEncode, MlsDecode)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SignatureSecretKey {
#[mls_codec(with = "mls_rs_codec::byte_vec")]
#[cfg_attr(feature = "serde", serde(with = "crate::vec_serde"))]
bytes: Vec<u8>,
}
impl Debug for SignatureSecretKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
crate::debug::pretty_bytes(&self.bytes)
.named("SignatureSecretKey")
.fmt(f)
}
}
#[cfg_attr(all(feature = "ffi", not(test)), ::safer_ffi_gen::safer_ffi_gen)]
impl SignatureSecretKey {
pub fn new(bytes: Vec<u8>) -> Self {
bytes.into()
}
pub fn new_slice(data: &[u8]) -> Self {
Self {
bytes: data.to_vec(),
}
}
pub fn as_bytes(&self) -> &[u8] {
&self.bytes
}
}
impl From<Vec<u8>> for SignatureSecretKey {
fn from(bytes: Vec<u8>) -> Self {
Self { bytes }
}
}
impl Deref for SignatureSecretKey {
type Target = Vec<u8>;
fn deref(&self) -> &Self::Target {
&self.bytes
}
}
impl AsRef<[u8]> for SignatureSecretKey {
fn as_ref(&self) -> &[u8] {
&self.bytes
}
}
/// Provides implementations for several ciphersuites via [`CipherSuiteProvider`].
pub trait CryptoProvider: Send + Sync {
type CipherSuiteProvider: CipherSuiteProvider + Clone;
/// Return the list of all supported ciphersuites.
fn supported_cipher_suites(&self) -> Vec<CipherSuite>;
/// Generate a [CipherSuiteProvider] for the given `cipher_suite`.
fn cipher_suite_provider(&self, cipher_suite: CipherSuite)
-> Option<Self::CipherSuiteProvider>;
}
/// Provides all cryptographic operations required by MLS for a given cipher suite.
#[cfg_attr(not(mls_build_async), maybe_async::must_be_sync)]
#[cfg_attr(all(target_arch = "wasm32", mls_build_async), maybe_async::must_be_async(?Send))]
#[cfg_attr(
all(not(target_arch = "wasm32"), mls_build_async),
maybe_async::must_be_async
)]
pub trait CipherSuiteProvider: Send + Sync {
type Error: IntoAnyError;
type HpkeContextS: HpkeContextS + Send + Sync;
type HpkeContextR: HpkeContextR + Send + Sync;
/// Return the implemented MLS [CipherSuite](CipherSuite).
fn cipher_suite(&self) -> CipherSuite;
/// Compute the hash of `data`.
async fn hash(&self, data: &[u8]) -> Result<Vec<u8>, Self::Error>;
/// Compute the MAC tag of `data` using the `key` of length [kdf_extract_size](CipherSuiteProvider::kdf_extract_size).
/// Verifying a MAC tag of `data` using `key` is done by calling this function
/// and checking that the result matches the tag.
async fn mac(&self, key: &[u8], data: &[u8]) -> Result<Vec<u8>, Self::Error>;
/// Encrypt `data` with public additional authenticated data `aad`, using additional `nonce`
/// (sometimes called the initialization vector, IV). The output should include
/// the authentication tag, if used by the given AEAD implementation (for example,
/// the tag can be appended to the ciphertext).
async fn aead_seal(
&self,
key: &[u8],
data: &[u8],
aad: Option<&[u8]>,
nonce: &[u8],
) -> Result<Vec<u8>, Self::Error>;
/// Decrypt the `ciphertext` generated by [aead_seal](CipherSuiteProvider::aead_seal).
/// This function should return an error if any of the inputs `key`, `aad` or `nonce` does not match
/// the corresponding input passed to [aead_seal](CipherSuiteProvider::aead_seal) to generate `ciphertext`.
async fn aead_open(
&self,
key: &[u8],
ciphertext: &[u8],
aad: Option<&[u8]>,
nonce: &[u8],
) -> Result<Zeroizing<Vec<u8>>, Self::Error>;
/// Return the length of the secret key `key` passed to [aead_seal](CipherSuiteProvider::aead_seal)
/// and [aead_open](CipherSuiteProvider::aead_open).
fn aead_key_size(&self) -> usize;
/// Return the length of the `nonce` passed to [aead_seal](CipherSuiteProvider::aead_seal)
/// and [aead_open](CipherSuiteProvider::aead_open).
fn aead_nonce_size(&self) -> usize;
/// Generate a pseudo-random key `prk` extracted from the initial key
/// material `ikm`, using an optional random `salt`. The outputted `prk` should have
/// [kdf_extract_size](CipherSuiteProvider::kdf_extract_size) bytes. It can be used
/// as input to [kdf_expand](CipherSuiteProvider::kdf_expand).
///
/// This function corresponds to the HKDF-Extract function from RFC 5869.
async fn kdf_extract(&self, salt: &[u8], ikm: &[u8])
-> Result<Zeroizing<Vec<u8>>, Self::Error>;
/// Generate key material of the desired length `len` by expanding the given pseudo-random key
/// `prk` of length [kdf_extract_size](CipherSuiteProvider::kdf_extract_size).
/// The additional input `info` contains optional context data.
///
/// This function corresponds to the HKDF-Expand function from RFC 5869.
async fn kdf_expand(
&self,
prk: &[u8],
info: &[u8],
len: usize,
) -> Result<Zeroizing<Vec<u8>>, Self::Error>;
/// Return the size of pseudo-random key `prk` outputted by [kdf_extract](CipherSuiteProvider::kdf_extract)
/// and inputted to [kdf_expand](CipherSuiteProvider::kdf_expand).
fn kdf_extract_size(&self) -> usize;
/// Encrypt the plaintext `pt` with optional public additional authenticated data `aad` to the
/// public key `remote_key` using additional context information `info` (which can be empty if
/// not needed). This function combines the action
/// of the [hpke_setup_s](CipherSuiteProvider::hpke_setup_s) and then calling [seal](HpkeContextS::seal)
/// on the resulting [HpkeContextS](self::HpkeContextS).
///
/// This function corresponds to the one-shot API in base mode in RFC 9180.
async fn hpke_seal(
&self,
remote_key: &HpkePublicKey,
info: &[u8],
aad: Option<&[u8]>,
pt: &[u8],
) -> Result<HpkeCiphertext, Self::Error>;
/// Decrypt the `ciphertext` generated by [hpke_seal](CipherSuiteProvider::hpke_seal).
/// This function combines the action of the [hpke_setup_r](CipherSuiteProvider::hpke_setup_r)
/// and then calling [open](HpkeContextR::open) on the resulting [HpkeContextR](self::HpkeContextR).
///
/// This function corresponds to the one-shot API in base mode in RFC 9180.
async fn hpke_open(
&self,
ciphertext: &HpkeCiphertext,
local_secret: &HpkeSecretKey,
local_public: &HpkePublicKey,
info: &[u8],
aad: Option<&[u8]>,
) -> Result<Vec<u8>, Self::Error>;
/// Generate a tuple containing the ciphertext `kem_output` that can
/// be used as the input to [hpke_setup_r](CipherSuiteProvider::hpke_setup_r),
/// as well as the sender context [HpkeContextS](self::HpkeContextS) that can be
/// used to generate AEAD ciphertexts and export keys.
///
/// The inputted `remote_key` will normally be generated using
/// [kem_derive](CipherSuiteProvider::kem_derive) or
/// [kem_generate](CipherSuiteProvider::kem_generate). However, the function
/// should return an error if the format is incorrect.
///
/// This function corresponds to the SetupBaseS function from RFC 9180.
async fn hpke_setup_s(
&self,
remote_key: &HpkePublicKey,
info: &[u8],
) -> Result<(Vec<u8>, Self::HpkeContextS), Self::Error>;
/// Receive the ciphertext `kem_output` generated by [hpke_setup_s](CipherSuiteProvider::hpke_setup_s)
/// and the `local_secret` corresponding to the `remote_key` used as input to
/// [hpke_setup_s](CipherSuiteProvider::hpke_setup_s). The ouput is the receiver context
/// [HpkeContextR](self::HpkeContextR) that can be used to decrypt AEAD ciphertexts
/// generated by the sender context [HpkeContextS](self::HpkeContextS) outputted by
/// [hpke_setup_r](CipherSuiteProvider::hpke_setup_r)
/// and export the same keys as that context.
///
/// The inputted `local_secret` will normally be generated using
/// [kem_derive](CipherSuiteProvider::kem_derive) or
/// [kem_generate](CipherSuiteProvider::kem_generate). However, the function
/// should return an error if the format is incorrect.
///
/// This function corresponds to the SetupBaseR function from RFC 9180.
async fn hpke_setup_r(
&self,
kem_output: &[u8],
local_secret: &HpkeSecretKey,
local_public: &HpkePublicKey,
info: &[u8],
) -> Result<Self::HpkeContextR, Self::Error>;
/// Derive from the initial key material `ikm` the KEM keys used as inputs to
/// [hpke_setup_r](CipherSuiteProvider::hpke_setup_r),
/// [hpke_setup_s](CipherSuiteProvider::hpke_setup_s), [hpke_seal](CipherSuiteProvider::hpke_seal)
/// and [hpke_open](CipherSuiteProvider::hpke_open).
async fn kem_derive(&self, ikm: &[u8]) -> Result<(HpkeSecretKey, HpkePublicKey), Self::Error>;
/// Generate fresh KEM keys to be used as inputs to [hpke_setup_r](CipherSuiteProvider::hpke_setup_r),
/// [hpke_setup_s](CipherSuiteProvider::hpke_setup_s), [hpke_seal](CipherSuiteProvider::hpke_seal)
/// and [hpke_open](CipherSuiteProvider::hpke_open).
async fn kem_generate(&self) -> Result<(HpkeSecretKey, HpkePublicKey), Self::Error>;
/// Verify that the given byte vector `key` can be decoded as an HPKE public key.
fn kem_public_key_validate(&self, key: &HpkePublicKey) -> Result<(), Self::Error>;
/// Fill `out` with random bytes.
fn random_bytes(&self, out: &mut [u8]) -> Result<(), Self::Error>;
/// Generate `count` bytes of pseudorandom bytes as a vector. This is a shortcut for
/// creating a `Vec<u8>` of `count` bytes and calling [random_bytes](CipherSuiteProvider::random_bytes).
fn random_bytes_vec(&self, count: usize) -> Result<Vec<u8>, Self::Error> {
let mut vec = vec![0u8; count];
self.random_bytes(&mut vec)?;
Ok(vec)
}
/// Generate fresh signature keys to be used as inputs to [sign](CipherSuiteProvider::sign)
/// and [verify](CipherSuiteProvider::verify)
async fn signature_key_generate(
&self,
) -> Result<(SignatureSecretKey, SignaturePublicKey), Self::Error>;
/// Output a public key corresponding to `secret_key`.
async fn signature_key_derive_public(
&self,
secret_key: &SignatureSecretKey,
) -> Result<SignaturePublicKey, Self::Error>;
/// Sign `data` using `secret_key`.
async fn sign(
&self,
secret_key: &SignatureSecretKey,
data: &[u8],
) -> Result<Vec<u8>, Self::Error>;
/// Verify that the secret key corresponding to `public_key` created the `signature` over `data`.
async fn verify(
&self,
public_key: &SignaturePublicKey,
signature: &[u8],
data: &[u8],
) -> Result<(), Self::Error>;
}