1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#![allow(dead_code)]

use hybrid_array::{Array, ArraySize};
use rand_core::CryptoRngCore;
use sha3::{
    digest::{ExtendableOutput, Update, XofReader},
    Digest, Sha3_256, Sha3_512, Shake128, Shake256,
};

use crate::param::{CbdSamplingSize, EncodedPolynomial};
use crate::util::B32;

pub fn rand<L: ArraySize>(rng: &mut impl CryptoRngCore) -> Array<u8, L> {
    let mut val = Array::default();
    rng.fill_bytes(&mut val);
    val
}

pub fn G(inputs: &[impl AsRef<[u8]>]) -> (B32, B32) {
    let mut h = Sha3_512::new();
    for x in inputs {
        Digest::update(&mut h, x);
    }
    let out = h.finalize();

    let mut a = B32::default();
    let mut b = B32::default();

    a.copy_from_slice(&out[..32]);
    b.copy_from_slice(&out[32..]);
    (a, b)
}

pub fn H(x: impl AsRef<[u8]>) -> B32 {
    let mut h = Sha3_256::new();
    Digest::update(&mut h, x);

    // This odd conversion is needed because the `sha3` crate links against an old version of
    // the `generic-array` crate.  It should be pretty cheap though, since there's only one
    // allocation / no copies.
    let mut out = B32::default();
    h.finalize_into(out.as_mut_slice().into());
    out
}

pub fn J(inputs: &[impl AsRef<[u8]>]) -> B32 {
    let mut h = Shake256::default();
    for x in inputs {
        h.update(x.as_ref());
    }
    let mut r = h.finalize_xof();

    let mut out = B32::default();
    r.read(&mut out);
    out
}

pub type PrfOutput<Eta> = EncodedPolynomial<<Eta as CbdSamplingSize>::SampleSize>;

pub fn PRF<Eta>(s: &B32, b: u8) -> PrfOutput<Eta>
where
    Eta: CbdSamplingSize,
{
    let mut h = Shake256::default();
    h.update(s.as_ref());
    h.update(&[b]);
    let mut r = h.finalize_xof();

    let mut out = PrfOutput::<Eta>::default();
    r.read(&mut out);
    out
}

pub fn XOF(rho: &B32, i: u8, j: u8) -> impl XofReader {
    let mut h = Shake128::default();
    h.update(rho);
    h.update(&[i, j]);
    h.finalize_xof()
}

// // A Go script to generate the test vector outputs
//
// package main
//
// import (
// 	"fmt"
// 	"golang.org/x/crypto/sha3"
// )
//
// func main() {
// 	// G: B* -> B32 || B32 = SHA3_512(c)
//   msgG := []byte("Input to an invocation of G")
//   hG := sha3.New512()
//   hG.Write(msgG)
//   fmt.Printf("G: %x\n", hG.Sum(nil))
//
//   // H: B* -> B32 = SHA3_256(s)
//   msgH := []byte("Input to an invocation of H")
//   hH := sha3.New256()
//   hH.Write(msgH)
//   fmt.Printf("H: %x\n", hH.Sum(nil))
//
//   // J: B* -> B32 = SHAKE256(s, 32)
//   msgJ := []byte("Input to an invocation of J")
//   outJ := make([]byte, 32)
//   sha3.ShakeSum256(outJ, msgJ)
//   fmt.Printf("J: %x\n", outJ)
//
//   // PRF<2>: B32 x B -> B64eta = SHAKE256(s || b, 64 * eta)
//   msgPRF2s := []byte("Input s to an invocation of PRF2")
//   msgPRF2b := []byte("b")
//   msgPRF2 := append(msgPRF2s, msgPRF2b...)
//   outPRF2 := make([]byte, 64 * 2)
//   sha3.ShakeSum256(outPRF2, msgPRF2)
//   fmt.Printf("PRF<2>: %x\n", outPRF2)
//
//   // PRF<3>: B33 x B -> B64eta = SHAKE256(s || b, 64 * eta)
//   msgPRF3s := []byte("Input s to an invocation of PRF3")
//   msgPRF3b := []byte("b")
//   msgPRF3 := append(msgPRF3s, msgPRF3b...)
//   outPRF3 := make([]byte, 64 * 3)
//   sha3.ShakeSum256(outPRF3, msgPRF3)
//   fmt.Printf("PRF<3>: %x\n", outPRF3)
//
//   // XOF: B32 x B x B -> B* = SHAKE128(rho || i || j)
//   msgXOFrho := []byte("Input rho, to an XOF invocation!")
//   msgXOFi := []byte("i")
//   msgXOFj := []byte("j")
//   msgXOF := append(append(msgXOFrho, msgXOFi...), msgXOFj...)
//   outXOF := make([]byte, 32)
//   sha3.ShakeSum128(outXOF, msgXOF)
//   fmt.Printf("XOF: %x\n", outXOF)
//
// }

#[cfg(test)]
mod test {
    use super::*;
    use hex_literal::hex;
    use hybrid_array::typenum::{U2, U3};

    #[test]
    fn g() {
        let msg1 = "Input to ".as_bytes();
        let msg2 = "an invocation of G".as_bytes();
        let (actualA, actualB) = G(&[msg1, msg2]);
        let expectedA = hex!("07dfced2a3a3feb3277cee1709818828ea6d2f42800152e9c312e848122231c2");
        let expectedB = hex!("272969098a1bbd5a0a9844e2f89f206d8f7f4599e36aecaa4793af400fd880d8");
        assert_eq!(actualA, expectedA);
        assert_eq!(actualB, expectedB);
    }

    #[test]
    fn h() {
        let msg = "Input to an invocation of H".as_bytes();
        let actual = H(msg);
        let expected = hex!("0ee3ce94213d7dd0069b24b8b15cdd0bcf8eb1c6b3c21c441dc6a19e979cc7eb");
        assert_eq!(actual, expected);
    }

    #[test]
    fn j() {
        let msg1 = "Input to ".as_bytes();
        let msg2 = "an invocation of J".as_bytes();
        let actual = J(&[msg1, msg2]);
        let expected = hex!("a5292293d70c8eca049cbb475c48fabd625ed2b20785a18248504d3741196b52");
        assert_eq!(actual, expected);
    }

    #[test]
    fn prf() {
        let s = B32::from_slice("Input s to an invocation of PRF2".as_bytes());
        let b = b'b';
        let actual = PRF::<U2>(s, b);
        let expected = hex!(
            "54c002415c2219b564d5c17b0df0c82f83ddf3fdecc7d814ed5d85457c06c2c3\
             ed0b0584f926dffb1e57c6105f8604e81c4605b93f8284e44585104101042075\
             568113c861516d91bed227638654fc7f872df205c113b8364091755b62284eec\
             a6124f2cd4c1cdf598cb8324a4f373470a8f81ee618c75cc33f66facee01c213"
        );
        assert_eq!(actual, expected);

        let s = B32::from_slice("Input s to an invocation of PRF3".as_bytes());
        let b = b'b';
        let actual = PRF::<U3>(s, b);
        let expected = hex!(
            "5e12028f67479b862a12713cda833e21b8ccd51bff9ddc2bfb9ab2910a9dc2e6\
             c58264a3f51ccc9ef4ff936a15505e016f60c36ffe300be01b9fb12eacd57867\
             0873c24709d6146b42c42a07873522eac100d61942ae53e73fbf9095b29b1ab7\
             169e954213c062703dad88c1c5f57f92af143f0364fe057b134b54ea8a55d94c\
             67764b3fc6b37376453978b8f0caeb6b18c188c28ee8681e28339477e042d5a1\
             b4a12deb1de8b9dad026b4e323e03973ffbe25dd511eed5460d22a9851cfc220"
        );
        assert_eq!(actual, expected);
    }

    #[test]
    fn xof() {
        let rho = B32::from_slice("Input rho, to an XOF invocation!".as_bytes());
        let i = b'i';
        let j = b'j';

        let mut reader = XOF(rho, i, j);
        let mut actual = [0u8; 32];
        reader.read(&mut actual);

        let expected = hex!("0d2c3e65f754d074cb366cf1b099ae105cc40f018342509f15f1ba8a1a4144cb");
        assert_eq!(actual, expected);
    }
}