1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
use core::ops::{Add, Mul, Sub};
use hybrid_array::{typenum::U256, Array};
use sha3::digest::XofReader;

use crate::crypto::{PrfOutput, PRF, XOF};
use crate::encode::Encode;
use crate::param::{ArraySize, CbdSamplingSize};
use crate::util::{Truncate, B32};

pub type Integer = u16;

/// An element of GF(q).  Although `q` is only 16 bits wide, we use a wider uint type to so that we
/// can defer modular reductions.
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct FieldElement(pub Integer);

impl FieldElement {
    pub const Q: Integer = 3329;
    pub const Q32: u32 = Self::Q as u32;
    pub const Q64: u64 = Self::Q as u64;
    const BARRETT_SHIFT: usize = 24;
    #[allow(clippy::integer_division_remainder_used)]
    const BARRETT_MULTIPLIER: u64 = (1 << Self::BARRETT_SHIFT) / Self::Q64;

    // A fast modular reduction for small numbers `x < 2*q`
    fn small_reduce(x: u16) -> u16 {
        if x < Self::Q {
            x
        } else {
            x - Self::Q
        }
    }

    fn barrett_reduce(x: u32) -> u16 {
        let product = u64::from(x) * Self::BARRETT_MULTIPLIER;
        let quotient = (product >> Self::BARRETT_SHIFT).truncate();
        let remainder = x - quotient * Self::Q32;
        Self::small_reduce(remainder.truncate())
    }

    // Algorithm 11. BaseCaseMultiply
    //
    // This is a hot loop.  We promote to u64 so that we can do the absolute minimum number of
    // modular reductions, since these are the expensive operation.
    fn base_case_multiply(a0: Self, a1: Self, b0: Self, b1: Self, i: usize) -> (Self, Self) {
        let a0 = u32::from(a0.0);
        let a1 = u32::from(a1.0);
        let b0 = u32::from(b0.0);
        let b1 = u32::from(b1.0);
        let g = u32::from(GAMMA[i].0);

        let b1g = u32::from(Self::barrett_reduce(b1 * g));

        let c0 = Self::barrett_reduce(a0 * b0 + a1 * b1g);
        let c1 = Self::barrett_reduce(a0 * b1 + a1 * b0);
        (Self(c0), Self(c1))
    }
}

impl Add<FieldElement> for FieldElement {
    type Output = Self;

    fn add(self, rhs: Self) -> Self {
        Self(Self::small_reduce(self.0 + rhs.0))
    }
}

impl Sub<FieldElement> for FieldElement {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self {
        // Guard against underflow if `rhs` is too large
        Self(Self::small_reduce(self.0 + Self::Q - rhs.0))
    }
}

impl Mul<FieldElement> for FieldElement {
    type Output = FieldElement;

    fn mul(self, rhs: FieldElement) -> FieldElement {
        let x = u32::from(self.0);
        let y = u32::from(rhs.0);
        Self(Self::barrett_reduce(x * y))
    }
}

/// An element of the ring `R_q`, i.e., a polynomial over `Z_q` of degree 255
#[derive(Clone, Copy, Default, Debug, PartialEq)]
pub struct Polynomial(pub Array<FieldElement, U256>);

impl Add<&Polynomial> for &Polynomial {
    type Output = Polynomial;

    fn add(self, rhs: &Polynomial) -> Polynomial {
        Polynomial(
            self.0
                .iter()
                .zip(rhs.0.iter())
                .map(|(&x, &y)| x + y)
                .collect(),
        )
    }
}

impl Sub<&Polynomial> for &Polynomial {
    type Output = Polynomial;

    fn sub(self, rhs: &Polynomial) -> Polynomial {
        Polynomial(
            self.0
                .iter()
                .zip(rhs.0.iter())
                .map(|(&x, &y)| x - y)
                .collect(),
        )
    }
}

impl Mul<&Polynomial> for FieldElement {
    type Output = Polynomial;

    fn mul(self, rhs: &Polynomial) -> Polynomial {
        Polynomial(rhs.0.iter().map(|&x| self * x).collect())
    }
}

impl Polynomial {
    // Algorithm 7. SamplePolyCBD_eta(B)
    //
    // To avoid all the bitwise manipulation in the algorithm as written, we reuse the logic in
    // ByteDecode.  We decode the PRF output into integers with eta bits, then use
    // `count_ones` to perform the summation described in the algorithm.
    pub fn sample_cbd<Eta>(B: &PrfOutput<Eta>) -> Self
    where
        Eta: CbdSamplingSize,
    {
        let vals: Polynomial = Encode::<Eta::SampleSize>::decode(B);
        Self(vals.0.iter().map(|val| Eta::ONES[val.0 as usize]).collect())
    }
}

/// A vector of polynomials of length `k`
#[derive(Clone, Default, Debug, PartialEq)]
pub struct PolynomialVector<K: ArraySize>(pub Array<Polynomial, K>);

impl<K: ArraySize> Add<PolynomialVector<K>> for PolynomialVector<K> {
    type Output = PolynomialVector<K>;

    fn add(self, rhs: PolynomialVector<K>) -> PolynomialVector<K> {
        PolynomialVector(
            self.0
                .iter()
                .zip(rhs.0.iter())
                .map(|(x, y)| x + y)
                .collect(),
        )
    }
}

impl<K: ArraySize> PolynomialVector<K> {
    pub fn sample_cbd<Eta>(sigma: &B32, start_n: u8) -> Self
    where
        Eta: CbdSamplingSize,
    {
        Self(Array::from_fn(|i| {
            let N = start_n + i.truncate();
            let prf_output = PRF::<Eta>(sigma, N);
            Polynomial::sample_cbd::<Eta>(&prf_output)
        }))
    }
}

/// An element of the ring `T_q`, i.e., a tuple of 128 elements of the direct sum components of `T_q`.
#[derive(Clone, Default, Debug, PartialEq)]
pub struct NttPolynomial(pub Array<FieldElement, U256>);

impl Add<&NttPolynomial> for &NttPolynomial {
    type Output = NttPolynomial;

    fn add(self, rhs: &NttPolynomial) -> NttPolynomial {
        NttPolynomial(
            self.0
                .iter()
                .zip(rhs.0.iter())
                .map(|(&x, &y)| x + y)
                .collect(),
        )
    }
}

// Algorithm 6. SampleNTT (lines 4-13)
struct FieldElementReader<'a> {
    xof: &'a mut dyn XofReader,
    data: [u8; 96],
    start: usize,
    next: Option<Integer>,
}

impl<'a> FieldElementReader<'a> {
    fn new(xof: &'a mut impl XofReader) -> Self {
        let mut out = Self {
            xof,
            data: [0u8; 96],
            start: 0,
            next: None,
        };

        // Fill the buffer
        out.xof.read(&mut out.data);

        out
    }

    fn next(&mut self) -> FieldElement {
        if let Some(val) = self.next {
            self.next = None;
            return FieldElement(val);
        }

        loop {
            if self.start == self.data.len() {
                self.xof.read(&mut self.data);
                self.start = 0;
            }

            let end = self.start + 3;
            let b = &self.data[self.start..end];
            self.start = end;

            let d1 = Integer::from(b[0]) + ((Integer::from(b[1]) & 0xf) << 8);
            let d2 = (Integer::from(b[1]) >> 4) + ((Integer::from(b[2]) as Integer) << 4);

            if d1 < FieldElement::Q {
                if d2 < FieldElement::Q {
                    self.next = Some(d2);
                }
                return FieldElement(d1);
            }

            if d2 < FieldElement::Q {
                return FieldElement(d2);
            }
        }
    }
}

impl NttPolynomial {
    // Algorithm 6 SampleNTT(B)
    pub fn sample_uniform(B: &mut impl XofReader) -> Self {
        let mut reader = FieldElementReader::new(B);
        Self(Array::from_fn(|_| reader.next()))
    }
}

// Since the powers of zeta used in the NTT and MultiplyNTTs are fixed, we use pre-computed tables
// to avoid the need to compute the exponetiations at runtime.
//
// * ZETA_POW_BITREV[i] = zeta^{BitRev_7(i)}
// * GAMMA[i] = zeta^{2 BitRev_7(i) + 1}
//
// Note that the const environment here imposes some annoying conditions.  Because operator
// overloading can't be const, we have to do all the reductions here manually.  Because `for` loops
// are forbidden in `const` functions, we do them manually with `while` loops.
#[allow(clippy::cast_possible_truncation)]
const ZETA_POW_BITREV: [FieldElement; 128] = {
    const ZETA: u64 = 17;
    #[allow(clippy::integer_division_remainder_used)]
    const fn bitrev7(x: usize) -> usize {
        ((x >> 6) % 2)
            | (((x >> 5) % 2) << 1)
            | (((x >> 4) % 2) << 2)
            | (((x >> 3) % 2) << 3)
            | (((x >> 2) % 2) << 4)
            | (((x >> 1) % 2) << 5)
            | ((x % 2) << 6)
    }

    // Compute the powers of zeta
    let mut pow = [FieldElement(0); 128];
    let mut i = 0;
    let mut curr = 1u64;
    #[allow(clippy::integer_division_remainder_used)]
    while i < 128 {
        pow[i] = FieldElement(curr as u16);
        i += 1;
        curr = (curr * ZETA) % FieldElement::Q64;
    }

    // Reorder the powers according to bitrev7
    let mut pow_bitrev = [FieldElement(0); 128];
    let mut i = 0;
    while i < 128 {
        pow_bitrev[i] = pow[bitrev7(i)];
        i += 1;
    }
    pow_bitrev
};

#[allow(clippy::cast_possible_truncation)]
const GAMMA: [FieldElement; 128] = {
    const ZETA: u64 = 17;
    let mut gamma = [FieldElement(0); 128];
    let mut i = 0;
    while i < 128 {
        let zpr = ZETA_POW_BITREV[i].0 as u64;
        #[allow(clippy::integer_division_remainder_used)]
        let g = (zpr * zpr * ZETA) % FieldElement::Q64;
        gamma[i] = FieldElement(g as u16);
        i += 1;
    }
    gamma
};

// Algorithm 10. MuliplyNTTs
impl Mul<&NttPolynomial> for &NttPolynomial {
    type Output = NttPolynomial;

    fn mul(self, rhs: &NttPolynomial) -> NttPolynomial {
        let mut out = NttPolynomial(Array::default());

        for i in 0..128 {
            let (c0, c1) = FieldElement::base_case_multiply(
                self.0[2 * i],
                self.0[2 * i + 1],
                rhs.0[2 * i],
                rhs.0[2 * i + 1],
                i,
            );

            out.0[2 * i] = c0;
            out.0[2 * i + 1] = c1;
        }

        out
    }
}

impl From<Array<FieldElement, U256>> for NttPolynomial {
    fn from(f: Array<FieldElement, U256>) -> NttPolynomial {
        NttPolynomial(f)
    }
}

impl From<NttPolynomial> for Array<FieldElement, U256> {
    fn from(f_hat: NttPolynomial) -> Array<FieldElement, U256> {
        f_hat.0
    }
}

// Algorithm 8. NTT
impl Polynomial {
    pub fn ntt(&self) -> NttPolynomial {
        let mut k = 1;

        let mut f = self.0;
        for len in [128, 64, 32, 16, 8, 4, 2] {
            for start in (0..256).step_by(2 * len) {
                let zeta = ZETA_POW_BITREV[k];
                k += 1;

                for j in start..(start + len) {
                    let t = zeta * f[j + len];
                    f[j + len] = f[j] - t;
                    f[j] = f[j] + t;
                }
            }
        }

        f.into()
    }
}

// Algorithm 9. NTT^{-1}
impl NttPolynomial {
    pub fn ntt_inverse(&self) -> Polynomial {
        let mut f: Array<FieldElement, U256> = self.0.clone();

        let mut k = 127;
        for len in [2, 4, 8, 16, 32, 64, 128] {
            for start in (0..256).step_by(2 * len) {
                let zeta = ZETA_POW_BITREV[k];
                k -= 1;

                for j in start..(start + len) {
                    let t = f[j];
                    f[j] = t + f[j + len];
                    f[j + len] = zeta * (f[j + len] - t);
                }
            }
        }

        FieldElement(3303) * &Polynomial(f)
    }
}

/// A vector of K NTT-domain polynomials
#[derive(Clone, Default, Debug, PartialEq)]
pub struct NttVector<K: ArraySize>(pub Array<NttPolynomial, K>);

impl<K: ArraySize> NttVector<K> {
    // Note the transpose here: Apparently the specification is incorrect, and the proper order
    // of indices is reversed.
    //
    // https://github.com/FiloSottile/mlkem768/blob/main/mlkem768.go#L110C4-L112C51
    pub fn sample_uniform(rho: &B32, i: usize, transpose: bool) -> Self {
        Self(Array::from_fn(|j| {
            let (i, j) = if transpose { (i, j) } else { (j, i) };
            let mut xof = XOF(rho, i.truncate(), j.truncate());
            NttPolynomial::sample_uniform(&mut xof)
        }))
    }
}

impl<K: ArraySize> Add<&NttVector<K>> for &NttVector<K> {
    type Output = NttVector<K>;

    fn add(self, rhs: &NttVector<K>) -> NttVector<K> {
        NttVector(
            self.0
                .iter()
                .zip(rhs.0.iter())
                .map(|(x, y)| x + y)
                .collect(),
        )
    }
}

impl<K: ArraySize> Mul<&NttVector<K>> for &NttVector<K> {
    type Output = NttPolynomial;

    fn mul(self, rhs: &NttVector<K>) -> NttPolynomial {
        self.0
            .iter()
            .zip(rhs.0.iter())
            .map(|(x, y)| x * y)
            .fold(NttPolynomial::default(), |x, y| &x + &y)
    }
}

impl<K: ArraySize> PolynomialVector<K> {
    pub fn ntt(&self) -> NttVector<K> {
        NttVector(self.0.iter().map(Polynomial::ntt).collect())
    }
}

impl<K: ArraySize> NttVector<K> {
    pub fn ntt_inverse(&self) -> PolynomialVector<K> {
        PolynomialVector(self.0.iter().map(NttPolynomial::ntt_inverse).collect())
    }
}

/// A K x K matrix of NTT-domain polynomials.  Each vector represents a row of the matrix, so that
/// multiplying on the right just requires iteration.
#[derive(Clone, Default, Debug, PartialEq)]
pub struct NttMatrix<K: ArraySize>(Array<NttVector<K>, K>);

impl<K: ArraySize> Mul<&NttVector<K>> for &NttMatrix<K> {
    type Output = NttVector<K>;

    fn mul(self, rhs: &NttVector<K>) -> NttVector<K> {
        NttVector(self.0.iter().map(|x| x * rhs).collect())
    }
}

impl<K: ArraySize> NttMatrix<K> {
    pub fn sample_uniform(rho: &B32, transpose: bool) -> Self {
        Self(Array::from_fn(|i| {
            NttVector::sample_uniform(rho, i, transpose)
        }))
    }

    pub fn transpose(&self) -> Self {
        Self(Array::from_fn(|i| {
            NttVector(Array::from_fn(|j| self.0[j].0[i].clone()))
        }))
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::util::Flatten;
    use hybrid_array::typenum::{U2, U3, U8};

    // Multiplication in R_q, modulo X^256 + 1
    impl Mul<&Polynomial> for &Polynomial {
        type Output = Polynomial;

        fn mul(self, rhs: &Polynomial) -> Self::Output {
            let mut out = Self::Output::default();
            for (i, x) in self.0.iter().enumerate() {
                for (j, y) in rhs.0.iter().enumerate() {
                    let (sign, index) = if i + j < 256 {
                        (FieldElement(1), i + j)
                    } else {
                        (FieldElement(FieldElement::Q - 1), i + j - 256)
                    };

                    out.0[index] = out.0[index] + (sign * *x * *y);
                }
            }
            out
        }
    }

    // A polynomial with only a scalar component, to make simple test cases
    fn const_ntt(x: Integer) -> NttPolynomial {
        let mut p = Polynomial::default();
        p.0[0] = FieldElement(x);
        p.ntt()
    }

    #[test]
    fn polynomial_ops() {
        let f = Polynomial(Array::from_fn(|i| FieldElement(i as Integer)));
        let g = Polynomial(Array::from_fn(|i| FieldElement(2 * i as Integer)));
        let sum = Polynomial(Array::from_fn(|i| FieldElement(3 * i as Integer)));
        assert_eq!((&f + &g), sum);
        assert_eq!((&sum - &g), f);
        assert_eq!(FieldElement(3) * &f, sum);
    }

    #[test]
    fn ntt() {
        let f = Polynomial(Array::from_fn(|i| FieldElement(i as Integer)));
        let g = Polynomial(Array::from_fn(|i| FieldElement(2 * i as Integer)));
        let f_hat = f.ntt();
        let g_hat = g.ntt();

        // Verify that NTT and NTT^-1 are actually inverses
        let f_unhat = f_hat.ntt_inverse();
        assert_eq!(f, f_unhat);

        // Verify that NTT is a homomorphism with regard to addition
        let fg = &f + &g;
        let f_hat_g_hat = &f_hat + &g_hat;
        let fg_unhat = f_hat_g_hat.ntt_inverse();
        assert_eq!(fg, fg_unhat);

        // Verify that NTT is a homomorphism with regard to multiplication
        let fg = &f * &g;
        let f_hat_g_hat = &f_hat * &g_hat;
        let fg_unhat = f_hat_g_hat.ntt_inverse();
        assert_eq!(fg, fg_unhat);
    }

    #[test]
    fn ntt_vector() {
        // Verify vector addition
        let v1: NttVector<U3> = NttVector(Array([const_ntt(1), const_ntt(1), const_ntt(1)]));
        let v2: NttVector<U3> = NttVector(Array([const_ntt(2), const_ntt(2), const_ntt(2)]));
        let v3: NttVector<U3> = NttVector(Array([const_ntt(3), const_ntt(3), const_ntt(3)]));
        assert_eq!((&v1 + &v2), v3);

        // Verify dot product
        assert_eq!((&v1 * &v2), const_ntt(6));
        assert_eq!((&v1 * &v3), const_ntt(9));
        assert_eq!((&v2 * &v3), const_ntt(18));
    }

    #[test]
    fn ntt_matrix() {
        // Verify matrix multiplication by a vector
        let a: NttMatrix<U3> = NttMatrix(Array([
            NttVector(Array([const_ntt(1), const_ntt(2), const_ntt(3)])),
            NttVector(Array([const_ntt(4), const_ntt(5), const_ntt(6)])),
            NttVector(Array([const_ntt(7), const_ntt(8), const_ntt(9)])),
        ]));
        let v_in: NttVector<U3> = NttVector(Array([const_ntt(1), const_ntt(2), const_ntt(3)]));
        let v_out: NttVector<U3> = NttVector(Array([const_ntt(14), const_ntt(32), const_ntt(50)]));
        assert_eq!(&a * &v_in, v_out);

        // Verify transpose
        let aT = NttMatrix(Array([
            NttVector(Array([const_ntt(1), const_ntt(4), const_ntt(7)])),
            NttVector(Array([const_ntt(2), const_ntt(5), const_ntt(8)])),
            NttVector(Array([const_ntt(3), const_ntt(6), const_ntt(9)])),
        ]));
        assert_eq!(a.transpose(), aT);
    }

    // To verify the accuracy of sampling, we use a theorem related to the law of large numbers,
    // which bounds the convergence of the Kullback-Liebler distance between the empirical
    // distribution and the hypothesized distribution.
    //
    // Theorem (Cover & Thomas, 1991, Theorem 12.2.1): Let $X_1, \ldots, X_n$ be i.i.d. $~P(x)$.
    // Then:
    //
    //   Pr{ D(P_{x^n} || P) > \epsilon } \leq 2^{ -n ( \epsilon - |X|^{ log(n+1) / n } ) }
    //
    // So if we test by computing D(P_{x^n} || P) and requiring the value to be below a threshold
    // \epsilon, then an unbiased sampling should pass with overwhelming probability 1 - 2^{-k},
    // for some k based on \epsilon, |X|, and n.
    //
    // If we take k = 256 and n = 256, then we can solve for the required threshold \epsilon:
    //
    //   \epsilon = 1 + |X|^{ 0.03125 }
    //
    // For the cases we're interested in here:
    //
    //   CBD(eta = 2) => |X| = 5   => epsilon ~= 2.0516
    //   CBD(eta = 2) => |X| = 7   => epsilon ~= 2.0627
    //   Uniform byte => |X| = 256 => epsilon ~= 2.1892
    //
    // Taking epsilon = 2.05 makes us conservative enough in all cases, without significantly
    // increasing the probability of false negatives.
    const KL_THRESHOLD: f64 = 2.05;

    // The centered binomial distributions are calculated as:
    //
    //   bin_\eta(k) = (2\eta \choose k + \eta) 2^{-2\eta}
    //
    // for k in $-\eta, \ldots, \eta$.  The cases of interest here are \eta = 2, 3.
    type Distribution = [f64; Q_SIZE];
    const Q_SIZE: usize = FieldElement::Q as usize;
    const CBD2: Distribution = {
        let mut dist = [0.0; Q_SIZE];
        dist[Q_SIZE - 2] = 1.0 / 16.0;
        dist[Q_SIZE - 1] = 4.0 / 16.0;
        dist[0] = 6.0 / 16.0;
        dist[1] = 4.0 / 16.0;
        dist[2] = 1.0 / 16.0;
        dist
    };
    const CBD3: Distribution = {
        let mut dist = [0.0; Q_SIZE];
        dist[Q_SIZE - 3] = 1.0 / 64.0;
        dist[Q_SIZE - 2] = 6.0 / 64.0;
        dist[Q_SIZE - 1] = 15.0 / 64.0;
        dist[0] = 20.0 / 64.0;
        dist[1] = 15.0 / 64.0;
        dist[2] = 6.0 / 64.0;
        dist[3] = 1.0 / 64.0;
        dist
    };
    const UNIFORM: Distribution = [1.0 / (FieldElement::Q as f64); Q_SIZE];

    fn kl_divergence(p: &Distribution, q: &Distribution) -> f64 {
        p.iter()
            .zip(q.iter())
            .map(|(p, q)| if *p == 0.0 { 0.0 } else { p * (p / q).log2() })
            .sum()
    }

    fn test_sample(sample: &[FieldElement], ref_dist: &Distribution) {
        // Verify data and compute the empirical distribution
        let mut sample_dist: Distribution = [0.0; Q_SIZE];
        let bump: f64 = 1.0 / (sample.len() as f64);
        for x in sample {
            assert!(x.0 < FieldElement::Q);
            assert!(ref_dist[x.0 as usize] > 0.0);

            sample_dist[x.0 as usize] += bump;
        }

        let d = kl_divergence(&sample_dist, ref_dist);
        assert!(d < KL_THRESHOLD);
    }

    #[test]
    fn sample_uniform() {
        // We require roughly Q/2 samples to verify the uniform distribution.  This is because for
        // M < N, the uniform distribution over a subset of M elements has KL distance:
        //
        //   M sum(p * log(q / p)) = log(q / p) = log(N / M)
        //
        // Since Q ~= 2^11 and 256 == 2^8, we need 2^3 == 8 runs of 256 to get out of the bad
        // regime and get a meaningful measurement.
        let rho = B32::default();
        let sample: Array<Array<FieldElement, U256>, U8> = Array::from_fn(|i| {
            let mut xof = XOF(&rho, 0, i as u8);
            NttPolynomial::sample_uniform(&mut xof).into()
        });

        test_sample(&sample.flatten(), &UNIFORM);
    }

    #[test]
    fn sample_cbd() {
        // Eta = 2
        let sigma = B32::default();
        let prf_output = PRF::<U2>(&sigma, 0);
        let sample = Polynomial::sample_cbd::<U2>(&prf_output).0;
        test_sample(&sample, &CBD2);

        // Eta = 3
        let sigma = B32::default();
        let prf_output = PRF::<U3>(&sigma, 0);
        let sample = Polynomial::sample_cbd::<U3>(&prf_output).0;
        test_sample(&sample, &CBD3);
    }
}