1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
use tokio::sync::broadcast;
/// Listens for the server shutdown signal.
///
/// Shutdown is signalled using a `broadcast::Receiver`. Only a single value is
/// ever sent. Once a value has been sent via the broadcast channel, the server
/// should shutdown.
///
/// The `Shutdown` struct listens for the signal and tracks that the signal has
/// been received. Callers may query for whether the shutdown signal has been
/// received or not.
#[derive(Debug)]
pub(crate) struct Shutdown {
/// `true` if the shutdown signal has been received
shutdown: bool,
/// The receive half of the channel used to listen for shutdown.
notify: broadcast::Receiver<()>,
}
impl Shutdown {
/// Create a new `Shutdown` backed by the given `broadcast::Receiver`.
pub(crate) fn new(notify: broadcast::Receiver<()>) -> Shutdown {
Shutdown {
shutdown: false,
notify,
}
}
/// Returns `true` if the shutdown signal has been received.
pub(crate) fn is_shutdown(&self) -> bool {
self.shutdown
}
/// Receive the shutdown notice, waiting if necessary.
pub(crate) async fn recv(&mut self) {
// If the shutdown signal has already been received, then return
// immediately.
if self.shutdown {
return;
}
// Cannot receive a "lag error" as only one value is ever sent.
let _ = self.notify.recv().await;
// Remember that the signal has been received.
self.shutdown = true;
}
}
#[cfg(test)]
mod tests {
use super::*;
#[tokio::test]
async fn test_shutdown() {
let (notify_shutdown, _) = broadcast::channel(1);
let mut shutdown = Shutdown::new(notify_shutdown.subscribe());
assert!(!shutdown.is_shutdown());
tokio::spawn(async move { notify_shutdown.send(()) });
shutdown.recv().await;
assert!(shutdown.is_shutdown());
shutdown.recv().await;
assert!(shutdown.is_shutdown());
}
}