1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
use crate::frame::{self, Frame};

use bytes::{Buf, BytesMut};
use std::io::{self, Cursor};
use tokio::io::{AsyncReadExt, AsyncWriteExt, BufWriter};
use tokio::net::TcpStream;

/// Send and receive `Frame` values from a remote peer.
///
/// When implementing networking protocols, a message on that protocol is
/// often composed of several smaller messages known as frames. The purpose of
/// `Connection` is to read and write frames on the underlying `TcpStream`.
///
/// To read frames, the `Connection` uses an internal buffer, which is filled
/// up until there are enough bytes to create a full frame. Once this happens,
/// the `Connection` creates the frame and returns it to the caller.
///
/// When sending frames, the frame is first encoded into the write buffer.
/// The contents of the write buffer are then written to the socket.
#[derive(Debug)]
pub struct Connection {
    // The `TcpStream`. It is decorated with a `BufWriter`, which provides write
    // level buffering. The `BufWriter` implementation provided by Tokio is
    // sufficient for our needs.
    stream: BufWriter<TcpStream>,

    // The buffer for reading frames.
    buffer: BytesMut,
}

impl Connection {
    /// Create a new `Connection`, backed by `socket`. Read and write buffers
    /// are initialized.
    pub fn new(socket: TcpStream) -> Connection {
        Connection {
            stream: BufWriter::new(socket),
            // Default to a 4KB read buffer. For the use case of mini telegram,
            // this is fine. However, real applications will want to tune this
            // value to their specific use case. There is a high likelihood that
            // a larger read buffer will work better.
            buffer: BytesMut::with_capacity(4 * 1024),
        }
    }

    /// Read a single `Frame` value from the underlying stream.
    ///
    /// The function waits until it has retrieved enough data to parse a frame.
    /// Any data remaining in the read buffer after the frame has been parsed is
    /// kept there for the next call to `read_frame`.
    ///
    /// # Returns
    ///
    /// On success, the received frame is returned. If the `TcpStream`
    /// is closed in a way that doesn't break a frame in half, it returns
    /// `None`. Otherwise, an error is returned.
    pub async fn read_frame(&mut self) -> crate::Result<Option<Frame>> {
        loop {
            // Attempt to parse a frame from the buffered data. If enough data
            // has been buffered, the frame is returned.
            if let Some(frame) = self.parse_frame()? {
                return Ok(Some(frame));
            }

            // There is not enough buffered data to read a frame. Attempt to
            // read more data from the socket.
            //
            // On success, the number of bytes is returned. `0` indicates "end
            // of stream".
            if 0 == self.stream.read_buf(&mut self.buffer).await? {
                // The remote closed the connection. For this to be a clean
                // shutdown, there should be no data in the read buffer. If
                // there is, this means that the peer closed the socket while
                // sending a frame.
                if self.buffer.is_empty() {
                    return Ok(None);
                } else {
                    return Err("connection reset by peer".into());
                }
            }
        }
    }

    /// Tries to parse a frame from the buffer. If the buffer contains enough
    /// data, the frame is returned and the data removed from the buffer. If not
    /// enough data has been buffered yet, `Ok(None)` is returned. If the
    /// buffered data does not represent a valid frame, `Err` is returned.
    fn parse_frame(&mut self) -> crate::Result<Option<Frame>> {
        use frame::Error::Incomplete;

        // Cursor is used to track the "current" location in the
        // buffer. Cursor also implements `Buf` from the `bytes` crate
        // which provides a number of helpful utilities for working
        // with bytes.
        let mut buf = Cursor::new(&self.buffer[..]);

        // The first step is to check if enough data has been buffered to parse
        // a single frame. This step is usually much faster than doing a full
        // parse of the frame, and allows us to skip allocating data structures
        // to hold the frame data unless we know the full frame has been
        // received.
        match Frame::check(&mut buf) {
            Ok(_) => {
                // The `check` function will have advanced the cursor until the
                // end of the frame. Since the cursor had position set to zero
                // before `Frame::check` was called, we obtain the length of the
                // frame by checking the cursor position.
                let len = buf.position() as usize;

                // Reset the position to zero before passing the cursor to
                // `Frame::parse`.
                buf.set_position(0);

                // Parse the frame from the buffer. This allocates the necessary
                // structures to represent the frame and returns the frame
                // value.
                //
                // If the encoded frame representation is invalid, an error is
                // returned. This should terminate the **current** connection
                // but should not impact any other connected client.
                let frame = Frame::parse(&mut buf)?;

                // Discard the parsed data from the read buffer.
                //
                // When `advance` is called on the read buffer, all of the data
                // up to `len` is discarded. The details of how this works is
                // left to `BytesMut`. This is often done by moving an internal
                // cursor, but it may be done by reallocating and copying data.
                self.buffer.advance(len);

                // Return the parsed frame to the caller.
                Ok(Some(frame))
            }
            // There is not enough data present in the read buffer to parse a
            // single frame. We must wait for more data to be received from the
            // socket. Reading from the socket will be done in the statement
            // after this `match`.
            //
            // We do not want to return `Err` from here as this "error" is an
            // expected runtime condition.
            Err(Incomplete) => Ok(None),
            // An error was encountered while parsing the frame. The connection
            // is now in an invalid state. Returning `Err` from here will result
            // in the connection being closed.
            Err(e) => Err(e.into()),
        }
    }

    /// Write a single `Frame` value to the underlying stream.
    ///
    /// The `Frame` value is written to the socket using the various `write_*`
    /// functions provided by `AsyncWrite`. Calling these functions directly on
    /// a `TcpStream` is **not** advised, as this will result in a large number of
    /// syscalls. However, it is fine to call these functions on a *buffered*
    /// write stream. The data will be written to the buffer. Once the buffer is
    /// full, it is flushed to the underlying socket.
    pub async fn write_frame(&mut self, frame: &Frame) -> io::Result<()> {
        // Arrays are encoded by encoding each entry. All other frame types are
        // considered literals. For now, mini-telegram is not able to encode
        // recursive frame structures. See below for more details.
        match frame {
            Frame::Array(val) => {
                // Encode the frame type prefix. For an array, it is `*`.
                self.stream.write_u8(b'*').await?;

                // Encode the length of the array.
                self.write_decimal(val.len() as u64).await?;

                // Iterate and encode each entry in the array.
                for entry in &**val {
                    self.write_value(entry).await?;
                }
            }
            // The frame type is a literal. Encode the value directly.
            _ => self.write_value(frame).await?,
        }

        // Ensure the encoded frame is written to the socket. The calls above
        // are to the buffered stream and writes. Calling `flush` writes the
        // remaining contents of the buffer to the socket.
        self.stream.flush().await
    }

    /// Write a frame literal to the stream
    async fn write_value(&mut self, frame: &Frame) -> io::Result<()> {
        match frame {
            Frame::Simple(val) => {
                self.stream.write_u8(b'+').await?;
                self.stream.write_all(val.as_bytes()).await?;
                self.stream.write_all(b"\r\n").await?;
            }
            Frame::Error(val) => {
                self.stream.write_u8(b'-').await?;
                self.stream.write_all(val.as_bytes()).await?;
                self.stream.write_all(b"\r\n").await?;
            }
            Frame::Integer(val) => {
                self.stream.write_u8(b':').await?;
                self.write_decimal(*val).await?;
            }
            Frame::Null => {
                self.stream.write_all(b"$-1\r\n").await?;
            }
            Frame::Bulk(val) => {
                let len = val.len();

                self.stream.write_u8(b'$').await?;
                self.write_decimal(len as u64).await?;
                self.stream.write_all(val).await?;
                self.stream.write_all(b"\r\n").await?;
            }
            // Encoding an `Array` from within a value cannot be done using a
            // recursive strategy. In general, async fns do not support
            // recursion. Mini-telegram has not needed to encode nested arrays yet,
            // so for now it is skipped.
            Frame::Array(_val) => unreachable!(),
        }

        Ok(())
    }

    /// Write a decimal frame to the stream
    async fn write_decimal(&mut self, val: u64) -> io::Result<()> {
        use std::io::Write;

        // Convert the value to a string
        let mut buf = [0u8; 20];
        let mut buf = Cursor::new(&mut buf[..]);
        write!(&mut buf, "{}", val)?;

        let pos = buf.position() as usize;
        self.stream.write_all(&buf.get_ref()[..pos]).await?;
        self.stream.write_all(b"\r\n").await?;

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use bytes::{BufMut, BytesMut};
    use futures::future::join_all;
    use std::str;
    use tokio::io::{AsyncReadExt, AsyncWriteExt, BufWriter};
    use tokio::net::{TcpListener, TcpStream};
    use tokio::time::Instant;
    use tokio::try_join;

    #[tokio::test]
    async fn test_tcp_stream() {
        let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
        let addr = listener.local_addr().unwrap();

        let server = tokio::spawn(async move {
            let mut stream = listener.accept().await.unwrap().0; // (stream, addr)
            let mut buf = [0];
            let _ = stream.read(&mut buf).await.unwrap();
            assert_eq!(buf[0], 144);
            // println!("server terminated!");
        });

        let client = tokio::spawn(async move {
            let mut stream = TcpStream::connect(addr).await.unwrap();
            let _ = stream.write_all(&[144]).await.unwrap();
        });

        try_join!(server, client).unwrap();
    }

    #[tokio::test]
    async fn test_tcp_stream_buf_writer() {
        let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
        let addr = listener.local_addr().unwrap();
        const N: usize = 10240;

        let server = tokio::spawn(async move {
            let mut handles: Vec<tokio::task::JoinHandle<()>> = Vec::new();
            for _ in 0..2 {
                let mut stream = listener.accept().await.unwrap().0; // (stream, addr)
                handles.push(tokio::spawn(async move {
                    let mut buf = [0; 10];
                    for _ in 0..N {
                        let _ = stream.read(&mut buf).await.unwrap();
                        assert_eq!(str::from_utf8(&buf).unwrap(), "some bytes");
                    }
                    // println!("handler thread terminated: {}", t);
                }));
            }
            let _ = join_all(handles).await;
            println!("server terminated!");
        });

        let client_tcp_stream = tokio::spawn(async move {
            let mut stream = TcpStream::connect(addr).await.unwrap();
            let now = Instant::now();
            for _ in 0..N {
                let _ = stream.write_all(b"some bytes").await.unwrap();
            }
            let tcp_stream_time_consumption = now.elapsed();
            // println!("tcp_stream:{:?}", tcp_stream_time_consumption);
            tcp_stream_time_consumption
        });

        let client_buf_writer = tokio::spawn(async move {
            let stream = TcpStream::connect(addr).await.unwrap();
            // `BufWriter` can improve the speed of programs that make *small* and
            // *repeated* write calls to the same file or network socket. It does not
            // help when writing very large amounts at once, or writing just one or a few
            // times. It also provides no advantage when writing to a destination that is
            // in memory, like a `Vec<u8>`.
            let mut stream = BufWriter::new(stream);
            let now = Instant::now();
            for _ in 0..N {
                let _ = stream.write_all(b"some bytes").await.unwrap();
            }
            let buf_writer_time_consumption = now.elapsed();
            // println!("buf_writer:{:?}", buf_writer_time_consumption);
            buf_writer_time_consumption
        });

        let (_, tcp_stream_time_consumption, buf_writer_time_consumption) =
            try_join!(server, client_tcp_stream, client_buf_writer).unwrap();

        assert!(buf_writer_time_consumption < tcp_stream_time_consumption);
    }

    #[tokio::test]
    async fn test_bytes_mut_growth() {
        // BytesMut’s BufMut implementation will implicitly grow its buffer
        // as necessary. However, explicitly reserving the required space
        // up-front before a series of inserts will be more efficient.
        let mut buf = BytesMut::with_capacity(10);
        let addr_a = format!("{:p}", buf.as_ptr());
        buf.put(&b"yumcoder"[..]);
        let addr_b = format!("{:p}", buf.as_ptr());
        assert_eq!(addr_a, addr_b);
        buf.put(&b"more content to expand the current buffer!"[..]);
        let addr_c = format!("{:p}", buf.as_ptr());
        assert_ne!(addr_c, addr_b);
    }

    #[tokio::test]
    async fn test_read_frame() {
        let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
        let addr = listener.local_addr().unwrap();

        let server = tokio::spawn(async move {
            let stream = listener.accept().await.unwrap().0; // (stream, addr)
            let mut connection = Connection::new(stream);
            let cmd = connection.read_frame().await.unwrap();
            if let Some(x) = cmd {
                assert_eq!(x.to_string(), "OK");
            }

            let cmd = connection.read_frame().await.unwrap_err();
            let err = frame::Error::from("protocol error; invalid frame type byte `33`");
            assert_eq!(cmd.to_string(), err.to_string());
            // println!("server terminated!");
        });

        let client = tokio::spawn(async move {
            let mut stream = TcpStream::connect(addr).await.unwrap();
            let _ = stream.write_all(&b"+OK\r\n"[..]).await.unwrap();
            let _ = stream.write_all(&b"!"[..]).await.unwrap();
        });

        try_join!(server, client).unwrap();
    }

    #[tokio::test]
    async fn test_write_frame() {
        let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
        let addr = listener.local_addr().unwrap();

        let server = tokio::spawn(async move {
            let stream = listener.accept().await.unwrap().0; // (stream, addr)
            let mut connection = Connection::new(stream);
            let cmd = connection.read_frame().await.unwrap();
            if let Some(x) = cmd {
                assert_eq!(x.to_string(), "OK");
                connection.write_frame(&x).await.unwrap();
            }
            // println!("server terminated!");
        });

        let client = tokio::spawn(async move {
            let mut stream = TcpStream::connect(addr).await.unwrap();
            // for simplicity using Connection only on server side
            let _ = stream.write_all(&b"+OK\r\n"[..]).await.unwrap();
            let mut buf = [0; 5];
            let _ = stream.read(&mut buf).await.unwrap();
            assert_eq!(str::from_utf8(&buf).unwrap(), "+OK\r\n");
        });

        try_join!(server, client).unwrap();
    }
}