mini_redis/client.rs
1//! Minimal Redis client implementation
2//!
3//! Provides an async connect and methods for issuing the supported commands.
4
5use crate::cmd::{Get, Publish, Set, Subscribe, Unsubscribe};
6use crate::{Connection, Frame};
7
8use async_stream::try_stream;
9use bytes::Bytes;
10use std::io::{Error, ErrorKind};
11use std::time::Duration;
12use tokio::net::{TcpStream, ToSocketAddrs};
13use tokio_stream::Stream;
14use tracing::{debug, instrument};
15
16/// Established connection with a Redis server.
17///
18/// Backed by a single `TcpStream`, `Client` provides basic network client
19/// functionality (no pooling, retrying, ...). Connections are established using
20/// the [`connect`](fn@connect) function.
21///
22/// Requests are issued using the various methods of `Client`.
23pub struct Client {
24 /// The TCP connection decorated with the redis protocol encoder / decoder
25 /// implemented using a buffered `TcpStream`.
26 ///
27 /// When `Listener` receives an inbound connection, the `TcpStream` is
28 /// passed to `Connection::new`, which initializes the associated buffers.
29 /// `Connection` allows the handler to operate at the "frame" level and keep
30 /// the byte level protocol parsing details encapsulated in `Connection`.
31 connection: Connection,
32}
33
34/// A client that has entered pub/sub mode.
35///
36/// Once clients subscribe to a channel, they may only perform pub/sub related
37/// commands. The `Client` type is transitioned to a `Subscriber` type in order
38/// to prevent non-pub/sub methods from being called.
39pub struct Subscriber {
40 /// The subscribed client.
41 client: Client,
42
43 /// The set of channels to which the `Subscriber` is currently subscribed.
44 subscribed_channels: Vec<String>,
45}
46
47/// A message received on a subscribed channel.
48#[derive(Debug, Clone)]
49pub struct Message {
50 pub channel: String,
51 pub content: Bytes,
52}
53
54/// Establish a connection with the Redis server located at `addr`.
55///
56/// `addr` may be any type that can be asynchronously converted to a
57/// `SocketAddr`. This includes `SocketAddr` and strings. The `ToSocketAddrs`
58/// trait is the Tokio version and not the `std` version.
59///
60/// # Examples
61///
62/// ```no_run
63/// use mini_redis::client;
64///
65/// #[tokio::main]
66/// async fn main() {
67/// let client = match client::connect("localhost:6379").await {
68/// Ok(client) => client,
69/// Err(_) => panic!("failed to establish connection"),
70/// };
71/// # drop(client);
72/// }
73/// ```
74///
75pub async fn connect<T: ToSocketAddrs>(addr: T) -> crate::Result<Client> {
76 // The `addr` argument is passed directly to `TcpStream::connect`. This
77 // performs any asynchronous DNS lookup and attempts to establish the TCP
78 // connection. An error at either step returns an error, which is then
79 // bubbled up to the caller of `mini_redis` connect.
80 let socket = TcpStream::connect(addr).await?;
81
82 // Initialize the connection state. This allocates read/write buffers to
83 // perform redis protocol frame parsing.
84 let connection = Connection::new(socket);
85
86 Ok(Client { connection })
87}
88
89impl Client {
90 /// Get the value of key.
91 ///
92 /// If the key does not exist the special value `None` is returned.
93 ///
94 /// # Examples
95 ///
96 /// Demonstrates basic usage.
97 ///
98 /// ```no_run
99 /// use mini_redis::client;
100 ///
101 /// #[tokio::main]
102 /// async fn main() {
103 /// let mut client = client::connect("localhost:6379").await.unwrap();
104 ///
105 /// let val = client.get("foo").await.unwrap();
106 /// println!("Got = {:?}", val);
107 /// }
108 /// ```
109 #[instrument(skip(self))]
110 pub async fn get(&mut self, key: &str) -> crate::Result<Option<Bytes>> {
111 // Create a `Get` command for the `key` and convert it to a frame.
112 let frame = Get::new(key).into_frame();
113
114 debug!(request = ?frame);
115
116 // Write the frame to the socket. This writes the full frame to the
117 // socket, waiting if necessary.
118 self.connection.write_frame(&frame).await?;
119
120 // Wait for the response from the server
121 //
122 // Both `Simple` and `Bulk` frames are accepted. `Null` represents the
123 // key not being present and `None` is returned.
124 match self.read_response().await? {
125 Frame::Simple(value) => Ok(Some(value.into())),
126 Frame::Bulk(value) => Ok(Some(value)),
127 Frame::Null => Ok(None),
128 frame => Err(frame.to_error()),
129 }
130 }
131
132 /// Set `key` to hold the given `value`.
133 ///
134 /// The `value` is associated with `key` until it is overwritten by the next
135 /// call to `set` or it is removed.
136 ///
137 /// If key already holds a value, it is overwritten. Any previous time to
138 /// live associated with the key is discarded on successful SET operation.
139 ///
140 /// # Examples
141 ///
142 /// Demonstrates basic usage.
143 ///
144 /// ```no_run
145 /// use mini_redis::client;
146 ///
147 /// #[tokio::main]
148 /// async fn main() {
149 /// let mut client = client::connect("localhost:6379").await.unwrap();
150 ///
151 /// client.set("foo", "bar".into()).await.unwrap();
152 ///
153 /// // Getting the value immediately works
154 /// let val = client.get("foo").await.unwrap().unwrap();
155 /// assert_eq!(val, "bar");
156 /// }
157 /// ```
158 #[instrument(skip(self))]
159 pub async fn set(&mut self, key: &str, value: Bytes) -> crate::Result<()> {
160 // Create a `Set` command and pass it to `set_cmd`. A separate method is
161 // used to set a value with an expiration. The common parts of both
162 // functions are implemented by `set_cmd`.
163 self.set_cmd(Set::new(key, value, None)).await
164 }
165
166 /// Set `key` to hold the given `value`. The value expires after `expiration`
167 ///
168 /// The `value` is associated with `key` until one of the following:
169 /// - it expires.
170 /// - it is overwritten by the next call to `set`.
171 /// - it is removed.
172 ///
173 /// If key already holds a value, it is overwritten. Any previous time to
174 /// live associated with the key is discarded on a successful SET operation.
175 ///
176 /// # Examples
177 ///
178 /// Demonstrates basic usage. This example is not **guaranteed** to always
179 /// work as it relies on time based logic and assumes the client and server
180 /// stay relatively synchronized in time. The real world tends to not be so
181 /// favorable.
182 ///
183 /// ```no_run
184 /// use mini_redis::client;
185 /// use tokio::time;
186 /// use std::time::Duration;
187 ///
188 /// #[tokio::main]
189 /// async fn main() {
190 /// let ttl = Duration::from_millis(500);
191 /// let mut client = client::connect("localhost:6379").await.unwrap();
192 ///
193 /// client.set_expires("foo", "bar".into(), ttl).await.unwrap();
194 ///
195 /// // Getting the value immediately works
196 /// let val = client.get("foo").await.unwrap().unwrap();
197 /// assert_eq!(val, "bar");
198 ///
199 /// // Wait for the TTL to expire
200 /// time::sleep(ttl).await;
201 ///
202 /// let val = client.get("foo").await.unwrap();
203 /// assert!(val.is_some());
204 /// }
205 /// ```
206 #[instrument(skip(self))]
207 pub async fn set_expires(
208 &mut self,
209 key: &str,
210 value: Bytes,
211 expiration: Duration,
212 ) -> crate::Result<()> {
213 // Create a `Set` command and pass it to `set_cmd`. A separate method is
214 // used to set a value with an expiration. The common parts of both
215 // functions are implemented by `set_cmd`.
216 self.set_cmd(Set::new(key, value, Some(expiration))).await
217 }
218
219 /// The core `SET` logic, used by both `set` and `set_expires.
220 async fn set_cmd(&mut self, cmd: Set) -> crate::Result<()> {
221 // Convert the `Set` command into a frame
222 let frame = cmd.into_frame();
223
224 debug!(request = ?frame);
225
226 // Write the frame to the socket. This writes the full frame to the
227 // socket, waiting if necessary.
228 self.connection.write_frame(&frame).await?;
229
230 // Wait for the response from the server. On success, the server
231 // responds simply with `OK`. Any other response indicates an error.
232 match self.read_response().await? {
233 Frame::Simple(response) if response == "OK" => Ok(()),
234 frame => Err(frame.to_error()),
235 }
236 }
237
238 /// Posts `message` to the given `channel`.
239 ///
240 /// Returns the number of subscribers currently listening on the channel.
241 /// There is no guarantee that these subscribers receive the message as they
242 /// may disconnect at any time.
243 ///
244 /// # Examples
245 ///
246 /// Demonstrates basic usage.
247 ///
248 /// ```no_run
249 /// use mini_redis::client;
250 ///
251 /// #[tokio::main]
252 /// async fn main() {
253 /// let mut client = client::connect("localhost:6379").await.unwrap();
254 ///
255 /// let val = client.publish("foo", "bar".into()).await.unwrap();
256 /// println!("Got = {:?}", val);
257 /// }
258 /// ```
259 #[instrument(skip(self))]
260 pub async fn publish(&mut self, channel: &str, message: Bytes) -> crate::Result<u64> {
261 // Convert the `Publish` command into a frame
262 let frame = Publish::new(channel, message).into_frame();
263
264 debug!(request = ?frame);
265
266 // Write the frame to the socket
267 self.connection.write_frame(&frame).await?;
268
269 // Read the response
270 match self.read_response().await? {
271 Frame::Integer(response) => Ok(response),
272 frame => Err(frame.to_error()),
273 }
274 }
275
276 /// Subscribes the client to the specified channels.
277 ///
278 /// Once a client issues a subscribe command, it may no longer issue any
279 /// non-pub/sub commands. The function consumes `self` and returns a `Subscriber`.
280 ///
281 /// The `Subscriber` value is used to receive messages as well as manage the
282 /// list of channels the client is subscribed to.
283 #[instrument(skip(self))]
284 pub async fn subscribe(mut self, channels: Vec<String>) -> crate::Result<Subscriber> {
285 // Issue the subscribe command to the server and wait for confirmation.
286 // The client will then have been transitioned into the "subscriber"
287 // state and may only issue pub/sub commands from that point on.
288 self.subscribe_cmd(&channels).await?;
289
290 // Return the `Subscriber` type
291 Ok(Subscriber {
292 client: self,
293 subscribed_channels: channels,
294 })
295 }
296
297 /// The core `SUBSCRIBE` logic, used by misc subscribe fns
298 async fn subscribe_cmd(&mut self, channels: &[String]) -> crate::Result<()> {
299 // Convert the `Subscribe` command into a frame
300 let frame = Subscribe::new(&channels).into_frame();
301
302 debug!(request = ?frame);
303
304 // Write the frame to the socket
305 self.connection.write_frame(&frame).await?;
306
307 // For each channel being subscribed to, the server responds with a
308 // message confirming subscription to that channel.
309 for channel in channels {
310 // Read the response
311 let response = self.read_response().await?;
312
313 // Verify it is confirmation of subscription.
314 match response {
315 Frame::Array(ref frame) => match frame.as_slice() {
316 // The server responds with an array frame in the form of:
317 //
318 // ```
319 // [ "subscribe", channel, num-subscribed ]
320 // ```
321 //
322 // where channel is the name of the channel and
323 // num-subscribed is the number of channels that the client
324 // is currently subscribed to.
325 [subscribe, schannel, ..]
326 if *subscribe == "subscribe" && *schannel == channel => {}
327 _ => return Err(response.to_error()),
328 },
329 frame => return Err(frame.to_error()),
330 };
331 }
332
333 Ok(())
334 }
335
336 /// Reads a response frame from the socket.
337 ///
338 /// If an `Error` frame is received, it is converted to `Err`.
339 async fn read_response(&mut self) -> crate::Result<Frame> {
340 let response = self.connection.read_frame().await?;
341
342 debug!(?response);
343
344 match response {
345 // Error frames are converted to `Err`
346 Some(Frame::Error(msg)) => Err(msg.into()),
347 Some(frame) => Ok(frame),
348 None => {
349 // Receiving `None` here indicates the server has closed the
350 // connection without sending a frame. This is unexpected and is
351 // represented as a "connection reset by peer" error.
352 let err = Error::new(ErrorKind::ConnectionReset, "connection reset by server");
353
354 Err(err.into())
355 }
356 }
357 }
358}
359
360impl Subscriber {
361 /// Returns the set of channels currently subscribed to.
362 pub fn get_subscribed(&self) -> &[String] {
363 &self.subscribed_channels
364 }
365
366 /// Receive the next message published on a subscribed channel, waiting if
367 /// necessary.
368 ///
369 /// `None` indicates the subscription has been terminated.
370 pub async fn next_message(&mut self) -> crate::Result<Option<Message>> {
371 match self.client.connection.read_frame().await? {
372 Some(mframe) => {
373 debug!(?mframe);
374
375 match mframe {
376 Frame::Array(ref frame) => match frame.as_slice() {
377 [message, channel, content] if *message == "message" => Ok(Some(Message {
378 channel: channel.to_string(),
379 content: Bytes::from(content.to_string()),
380 })),
381 _ => Err(mframe.to_error()),
382 },
383 frame => Err(frame.to_error()),
384 }
385 }
386 None => Ok(None),
387 }
388 }
389
390 /// Convert the subscriber into a `Stream` yielding new messages published
391 /// on subscribed channels.
392 ///
393 /// `Subscriber` does not implement stream itself as doing so with safe code
394 /// is non trivial. The usage of async/await would require a manual Stream
395 /// implementation to use `unsafe` code. Instead, a conversion function is
396 /// provided and the returned stream is implemented with the help of the
397 /// `async-stream` crate.
398 pub fn into_stream(mut self) -> impl Stream<Item = crate::Result<Message>> {
399 // Uses the `try_stream` macro from the `async-stream` crate. Generators
400 // are not stable in Rust. The crate uses a macro to simulate generators
401 // on top of async/await. There are limitations, so read the
402 // documentation there.
403 try_stream! {
404 while let Some(message) = self.next_message().await? {
405 yield message;
406 }
407 }
408 }
409
410 /// Subscribe to a list of new channels
411 #[instrument(skip(self))]
412 pub async fn subscribe(&mut self, channels: &[String]) -> crate::Result<()> {
413 // Issue the subscribe command
414 self.client.subscribe_cmd(channels).await?;
415
416 // Update the set of subscribed channels.
417 self.subscribed_channels
418 .extend(channels.iter().map(Clone::clone));
419
420 Ok(())
421 }
422
423 /// Unsubscribe to a list of new channels
424 #[instrument(skip(self))]
425 pub async fn unsubscribe(&mut self, channels: &[String]) -> crate::Result<()> {
426 let frame = Unsubscribe::new(&channels).into_frame();
427
428 debug!(request = ?frame);
429
430 // Write the frame to the socket
431 self.client.connection.write_frame(&frame).await?;
432
433 // if the input channel list is empty, server acknowledges as unsubscribing
434 // from all subscribed channels, so we assert that the unsubscribe list received
435 // matches the client subscribed one
436 let num = if channels.is_empty() {
437 self.subscribed_channels.len()
438 } else {
439 channels.len()
440 };
441
442 // Read the response
443 for _ in 0..num {
444 let response = self.client.read_response().await?;
445
446 match response {
447 Frame::Array(ref frame) => match frame.as_slice() {
448 [unsubscribe, channel, ..] if *unsubscribe == "unsubscribe" => {
449 let len = self.subscribed_channels.len();
450
451 if len == 0 {
452 // There must be at least one channel
453 return Err(response.to_error());
454 }
455
456 // unsubscribed channel should exist in the subscribed list at this point
457 self.subscribed_channels.retain(|c| *channel != &c[..]);
458
459 // Only a single channel should be removed from the
460 // list of subscribed channels.
461 if self.subscribed_channels.len() != len - 1 {
462 return Err(response.to_error());
463 }
464 }
465 _ => return Err(response.to_error()),
466 },
467 frame => return Err(frame.to_error()),
468 };
469 }
470
471 Ok(())
472 }
473}