1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
//! # mini_matrix
//!
//! A mini linear algebra library implemented in Rust.

use num::{Float, Num};
use std::fmt::{Debug, Display};

use std::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign};
use std::ops::{Deref, DerefMut, Index, IndexMut};

use crate::Vector;

/// A generic matrix type with `M` rows and `N` columns.
///
/// # Examples
///
/// ```
/// use mini_matrix::Matrix;
///
/// let matrix = Matrix::<f64, 2, 2>::from([[1.0, 2.0], [3.0, 4.0]]);
/// assert_eq!(matrix.size(), (2, 2));
/// ```
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Matrix<T, const M: usize, const N: usize> {
    /// The underlying storage for the matrix elements.
    pub store: [[T; N]; M],
}

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Copy + Default,
{
    /// Creates a new `Matrix` from the given 2D array.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let matrix = Matrix::<i32, 2, 3>::from([[1, 2, 3], [4, 5, 6]]);
    /// ```
    pub fn from(data: [[T; N]; M]) -> Self {
        Self { store: data }
    }

    /// Returns the dimensions of the matrix as a tuple `(rows, columns)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let matrix = Matrix::<f64, 3, 4>::zero();
    /// assert_eq!(matrix.size(), (3, 4));
    /// ```
    pub const fn size(&self) -> (usize, usize) {
        (M, N)
    }

    /// Creates a new `Matrix` with all elements set to the default value of type `T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let matrix = Matrix::<f64, 2, 2>::zero();
    /// assert_eq!(matrix.store, [[0.0, 0.0], [0.0, 0.0]]);
    /// ```
    pub fn zero() -> Self {
        Self {
            store: [[T::default(); N]; M],
        }
    }

    pub fn from_vecs(vecs: Vec<Vec<T>>) -> Self {
        let mut store = [[T::default(); N]; M];
        for (i, vec) in vecs.iter().enumerate() {
            for (j, elem) in vec.iter().enumerate() {
                store[i][j] = *elem;
            }
        }
        Self { store }
    }

    #[allow(dead_code)]
    fn map<F>(&self, mut f: F) -> Matrix<T, M, N>
    where
        F: FnMut(T) -> T,
    {
        let mut result = Matrix::<T, M, N>::zero();
        for i in 0..M {
            for j in 0..N {
                result[(i, j)] = f(self[(i, j)]);
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: AddAssign + SubAssign + MulAssign + Copy + Default,
{
    /// Adds another matrix to this matrix in-place.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let mut a = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// let b = Matrix::<i32, 2, 2>::from([[5, 6], [7, 8]]);
    /// a.add(&b);
    /// assert_eq!(a.store, [[6, 8], [10, 12]]);
    /// ```
    pub fn add(&mut self, other: &Self) {
        for (l_row, r_row) in self.store.iter_mut().zip(other.store.iter()) {
            for (l, r) in l_row.iter_mut().zip(r_row.iter()) {
                *l += *r;
            }
        }
    }

    /// Subtracts another matrix from this matrix in-place.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let mut a = Matrix::<i32, 2, 2>::from([[5, 6], [7, 8]]);
    /// let b = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// a.sub(&b);
    /// assert_eq!(a.store, [[4, 4], [4, 4]]);
    /// ```
    pub fn sub(&mut self, other: &Self) {
        for (l_row, r_row) in self.store.iter_mut().zip(other.store.iter()) {
            for (l, r) in l_row.iter_mut().zip(r_row.iter()) {
                *l -= *r;
            }
        }
    }

    /// Multiplies this matrix by a scalar value in-place.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let mut a = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// a.scl(2);
    /// assert_eq!(a.store, [[2, 4], [6, 8]]);
    /// ```
    pub fn scl(&mut self, scalar: T) {
        for row in self.store.iter_mut() {
            for elem in row.iter_mut() {
                *elem *= scalar;
            }
        }
    }
}

impl<T, const M: usize, const N: usize> IndexMut<(usize, usize)> for Matrix<T, M, N> {
    /// Mutably indexes into the matrix, allowing modification of its elements.
    ///
    /// # Arguments
    ///
    /// * `index` - A tuple `(row, column)` specifying the element to access.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let mut matrix = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// matrix[(0, 1)] = 5;
    /// assert_eq!(matrix.store, [[1, 5], [3, 4]]);
    /// ```
    fn index_mut(&mut self, index: (usize, usize)) -> &mut T {
        &mut self.store[index.0][index.1]
    }
}

impl<T, const M: usize, const N: usize> Index<(usize, usize)> for Matrix<T, M, N> {
    type Output = T;

    /// Immutably indexes into the matrix, allowing read access to its elements.
    ///
    /// # Arguments
    ///
    /// * `index` - A tuple `(row, column)` specifying the element to access.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let matrix = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// assert_eq!(matrix[(1, 0)], 3);
    /// ```
    fn index(&self, index: (usize, usize)) -> &Self::Output {
        &self.store.index(index.0).index(index.1)
    }
}

impl<T, const M: usize, const N: usize> Deref for Matrix<T, M, N> {
    type Target = [[T; N]; M];

    /// Dereferences the matrix, allowing it to be treated as a slice.
    ///
    /// # Note
    ///
    /// This implementation is currently unfinished.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let matrix = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// // Usage example will be available once implementation is complete
    /// ```
    fn deref(&self) -> &Self::Target {
        &self.store
    }
}

impl<T, const M: usize, const N: usize> DerefMut for Matrix<T, M, N> {
    /// Mutably dereferences the matrix, allowing it to be treated as a mutable slice.
    ///
    /// # Note
    ///
    /// This implementation is currently unfinished.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let mut matrix = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// // Usage example will be available once implementation is complete
    /// ```
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.store
    }
}

impl<T, const M: usize, const N: usize> Add for Matrix<T, M, N>
where
    T: AddAssign + Copy + Num,
{
    type Output = Self;

    /// Adds two matrices element-wise.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// let b = Matrix::<i32, 2, 2>::from([[5, 6], [7, 8]]);
    /// let c = a + b;
    /// assert_eq!(c.store, [[6, 8], [10, 12]]);
    /// ```
    fn add(self, rhs: Self) -> Self::Output {
        let mut result = self.clone();
        for (l_row, r_row) in result.store.iter_mut().zip(rhs.store.iter()) {
            for (l, r) in l_row.iter_mut().zip(r_row.iter()) {
                *l += *r;
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Sub for Matrix<T, M, N>
where
    T: SubAssign + Copy + Num,
{
    type Output = Self;

    /// Subtracts one matrix from another element-wise.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 2, 2>::from([[5, 6], [7, 8]]);
    /// let b = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// let c = a - b;
    /// assert_eq!(c.store, [[4, 4], [4, 4]]);
    /// ```
    fn sub(self, rhs: Self) -> Self::Output {
        let mut result = self.clone();
        for (l_row, r_row) in result.store.iter_mut().zip(rhs.store.iter()) {
            for (l, r) in l_row.iter_mut().zip(r_row.iter()) {
                *l -= *r;
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Mul<T> for Matrix<T, M, N>
where
    T: MulAssign + Copy + Num,
{
    type Output = Self;

    /// Multiplies a matrix by a scalar value.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// let b = a * 2;
    /// assert_eq!(b.store, [[2, 4], [6, 8]]);
    /// ```
    fn mul(self, rhs: T) -> Self::Output {
        let mut result = self.clone();
        for row in result.store.iter_mut() {
            for elem in row.iter_mut() {
                *elem *= rhs;
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Mul<Vector<T, N>> for Matrix<T, M, N>
where
    T: MulAssign + AddAssign + Copy + Num + Default,
{
    type Output = Vector<T, M>;

    /// Multiplies a matrix by a vector.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::{Matrix, Vector};
    ///
    /// let a = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// let v = Vector::<i32, 2>::from([5, 6]);
    /// let result = a * v;
    /// assert_eq!(result.store, [17, 39]);
    /// ```
    fn mul(self, rhs: Vector<T, N>) -> Self::Output {
        let mut result = Vector::zero();
        for (idx, row) in self.store.iter().enumerate() {
            for (e1, e2) in row.iter().zip(rhs.store.iter()) {
                result.store[idx] += *e1 * *e2;
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Mul<Matrix<T, N, N>> for Matrix<T, M, N>
where
    T: MulAssign + AddAssign + Copy + Num + Default,
{
    type Output = Self;

    /// Multiplies two matrices.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 2, 2>::from([[1, 2], [3, 4]]);
    /// let b = Matrix::<i32, 2, 2>::from([[5, 6], [7, 8]]);
    /// let c = a * b;
    /// assert_eq!(c.store, [[17, 23], [39, 53]]);
    /// ```
    fn mul(self, rhs: Matrix<T, N, N>) -> Self::Output {
        let mut result = Matrix::zero();
        for (i, row) in self.store.iter().enumerate() {
            for (j, col) in rhs.store.iter().enumerate() {
                for (e1, e2) in row.iter().zip(col.iter()) {
                    result.store[i][j] += *e1 * *e2;
                }
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Neg for Matrix<T, M, N>
where
    T: Neg<Output = T> + Copy,
{
    type Output = Self;

    /// Negates all elements of the matrix.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 2, 2>::from([[1, -2], [-3, 4]]);
    /// let b = -a;
    /// assert_eq!(b.store, [[-1, 2], [3, -4]]);
    /// ````
    fn neg(self) -> Self::Output {
        let mut result = self.clone();
        for row in result.store.iter_mut() {
            for elem in row.iter_mut() {
                *elem = -*elem;
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Display for Matrix<T, M, N>
where
    T: AddAssign + SubAssign + MulAssign + Copy + std::fmt::Display,
{
    /// Formats the matrix for display.
    ///
    /// Each row of the matrix is displayed on a new line, with elements separated by commas.
    /// Elements are formatted with one decimal place precision.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<f32, 2, 2>::from([[1.0, 2.5], [3.7, 4.2]]);
    /// println!("{}", a);
    /// // Output:
    /// // // [1.0, 2.5]
    /// // // [3.7, 4.2]
    /// ```
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        for (i, row) in self.store.iter().enumerate() {
            if i > 0 {
                writeln!(f)?;
            }
            write!(f, "// [")?;
            for (j, val) in row.iter().enumerate() {
                if j > 0 {
                    write!(f, ", ")?;
                }
                write!(f, "{:.1}", val)?;
            }
            write!(f, "]")?;
        }
        write!(f, "\n")?;
        Ok(())
    }
}

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Num + Copy + AddAssign + Default,
{
    /// Multiplies the matrix by a vector.
    ///
    /// # Arguments
    /// * `vec` - The vector to multiply with the matrix.
    ///
    /// # Returns
    /// The resulting vector of the multiplication.
    pub fn mul_vec(&mut self, vec: &Vector<T, N>) -> Vector<T, N> {
        let mut result = Vector::zero();
        for (idx, row) in self.store.iter_mut().enumerate() {
            for (e1, e2) in row.iter_mut().zip(vec.store.iter()) {
                result[idx] += *e1 * *e2;
            }
        }
        result
    }

    /// Multiplies the matrix by another matrix.
    ///
    /// # Arguments
    /// * `mat` - The matrix to multiply with.
    ///
    /// # Returns
    /// The resulting matrix of the multiplication.
    pub fn mul_mat(&mut self, mat: &Matrix<T, M, N>) -> Matrix<T, M, N> {
        let mut result = Matrix::zero();
        for i in 0..M {
            for j in 0..N {
                for k in 0..N {
                    result[(i, j)] += self[(i, k)] * mat[(k, j)];
                }
            }
        }
        result
    }
}

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Num + Copy + AddAssign + Default,
{
    /// Calculates the trace of the matrix.
    ///
    /// The trace is defined as the sum of the elements on the main diagonal.
    ///
    /// # Panics
    ///
    /// Panics if the matrix is not square (i.e., if M != N).
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let mut a = Matrix::<i32, 3, 3>::from([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);
    /// assert_eq!(a.trace(), 15);
    /// ```
    pub fn trace(&self) -> T {
        assert!(M == N, "Matrix must be square to calculate trace");

        let mut result = T::default();
        for i in 0..M {
            result += self[(i, i)];
        }
        result
    }
}

/* ********************************************* */
/*            Exercise 09 - Transpose            */
/* ********************************************* */
impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Copy + Default,
{
    /// Computes the transpose of the matrix.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let mut a = Matrix::<i32, 2, 3>::from([[1, 2, 3], [4, 5, 6]]);
    /// let b = a.transpose();
    /// assert_eq!(b.store, [[1, 4], [2, 5], [3, 6]]);
    /// ```
    pub fn transpose(&mut self) -> Matrix<T, N, M> {
        let mut result = Matrix::zero();
        for i in 0..M {
            for j in 0..N {
                result[(j, i)] = self[(i, j)];
            }
        }
        result
    }
}

/* ********************************************** */
/*             Exercise XX - Identity             */
/* ********************************************** */
impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Copy + Default + Num,
{
    /// Creates an identity matrix.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 3, 3>::identity();
    /// assert_eq!(a.store, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]);
    /// ```
    pub fn identity() -> Matrix<T, M, N> {
        let mut result = Matrix::zero();
        for i in 0..M {
            result[(i, i)] = T::one();
        }
        result
    }
}

/* ************************************************* */
/*             Exercise 12 - Row Echelon             */
/* ************************************************* */

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Copy + Default + Mul<Output = T> + PartialEq + Num + Div<Output = T> + Sub<Output = T>,
{
    /// Converts a given matrix to its Reduced Row-Echelon Form (RREF).
    ///
    /// Row-echelon form is a specific form of a matrix that is particularly useful for solving
    /// systems of linear equations and for understanding the properties of the matrix. To explain
    /// it simply and in detail, let's go through what row-echelon form is, how to achieve it, and
    /// an example to illustrate the process.
    ///
    /// # Row-Echelon Form
    ///
    /// A matrix is in row-echelon form if it satisfies the following conditions:
    ///
    /// 1. **Leading Entry**: The leading entry (first non-zero number from the left) in each row is 1.
    ///    This is called the pivot.
    /// 2. **Zeros Below**: The pivot in each row is to the right of the pivot in the row above, and
    ///    all entries below a pivot are zeros.
    /// 3. **Rows of Zeros**: Any rows consisting entirely of zeros are at the bottom of the matrix.
    ///
    /// # Reduced Row-Echelon Form
    ///
    /// A matrix is in reduced row-echelon form (RREF) if it additionally satisfies:
    ///
    /// 4. **Leading Entries**: Each leading 1 is the only non-zero entry in its column.
    ///
    /// # Achieving Row-Echelon Form
    ///
    /// To convert a matrix into row-echelon form, we use a process called Gaussian elimination.
    /// This involves performing row operations:
    ///
    /// 1. **Row swapping**: Swapping the positions of two rows.
    /// 2. **Row multiplication**: Multiplying all entries of a row by a non-zero scalar.
    /// 3. **Row addition**: Adding or subtracting the multiples of one row to another row.
    ///
    ///
    /// Let's consider an example with a `3 x 3` matrix:
    ///
    ///
    /// A = [
    ///   [1, 2, 3],
    ///   [4, 5, 6],
    ///   [7, 8, 9]
    /// ]
    ///
    /// ## Step-by-Step Process
    ///
    /// 1. **Starting Matrix**:
    ///
    ///    [
    ///      [1, 2, 3],
    ///      [4, 5, 6],
    ///      [7, 8, 9]
    ///    ]
    ///
    /// 2. **Make the Pivot of Row 1 (already 1)**:
    ///
    ///    The first leading entry is already 1.
    ///
    /// 3. **Eliminate Below Pivot in Column 1**:
    ///
    ///    Subtract 4 times the first row from the second row:
    ///
    ///    R2 = R2 - 4R1
    ///    [
    ///      [1, 2, 3],
    ///      [0, -3, -6],
    ///      [7, 8, 9]
    ///    ]
    ///
    ///    Subtract 7 times the first row from the third row:
    ///
    ///    R3 = R3 - 7R1
    ///    [
    ///      [1, 2, 3],
    ///      [0, -3, -6],
    ///      [0, -6, -12]
    ///    ]
    ///
    /// 4. **Make the Pivot of Row 2**:
    ///
    ///    Divide the second row by -3 to make the pivot 1:
    ///
    ///    R2 = (1 / -3) * R2
    ///    [
    ///      [1, 2, 3],
    ///      [0, 1, 2],
    ///      [0, -6, -12]
    ///    ]
    ///
    /// 5. **Eliminate Below Pivot in Column 2**:
    ///
    ///    Add 6 times the second row to the third row:
    ///
    ///    R3 = R3 + 6R2
    ///    [
    ///      [1, 2, 3],
    ///      [0, 1, 2],
    ///      [0, 0, 0]
    ///    ]
    ///
    /// Now, the matrix is in row-echelon form.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<f64, 3, 4>::from([
    ///     [1.0, 2.0, 3.0, 4.0],
    ///     [5.0, 6.0, 7.0, 8.0],
    ///     [9.0, 10.0, 11.0, 12.0]
    /// ]);
    /// let b = a.row_echelon();
    /// // Check the result (approximate due to floating-point arithmetic)
    /// ```
    // pub fn row_echelon(&self) -> Matrix<T, M, N> {
    //     let mut result = self.clone();
    //     let mut pivot = 0;

    //     for r in 0..M {
    //         if pivot >= N {
    //             break;
    //         }

    //         // Find the row with a non-zero pivot
    //         let mut i = r;
    //         while i < M && result[(i, pivot)] == T::default() {
    //             i += 1;
    //         }

    //         if i == M {
    //             pivot += 1;
    //             if pivot >= N {
    //                 break;
    //             }
    //             // No non-zero element found in this column, continue to the next column
    //             continue;
    //         }

    //         // Swap the current row with the row containing the non-zero pivot
    //         if i != r {
    //             for j in 0..N {
    //                 let temp = result[(r, j)];
    //                 result[(r, j)] = result[(i, j)];
    //                 result[(i, j)] = temp;
    //             }
    //         }

    //         // Normalize the pivot row
    //         let divisor = result[(r, pivot)];
    //         if divisor != T::default() {
    //             for j in 0..N {
    //                 result[(r, j)] = result[(r, j)] / divisor;
    //             }
    //         }

    //         // Eliminate the pivot column in all other rows
    //         for i in 0..M {
    //             if i != r {
    //                 let factor = result[(i, pivot)];
    //                 for j in 0..N {
    //                     result[(i, j)] = result[(i, j)] - factor * result[(r, j)];
    //                 }
    //             }
    //         }

    //         pivot += 1;
    //     }

    //     result
    // }

    pub fn row_echelon(&self) -> Matrix<T, M, N> {
        let mut result = self.clone();
        // let mut matrix_out = result.store;
        let mut pivot = 0;
        let row_count = M;
        let column_count = N;

        'outer: for r in 0..row_count {
            if column_count <= pivot {
                break;
            }
            let mut i = r;
            while result[(i, pivot)] == T::default() {
                i = i + 1;
                if i == row_count {
                    i = r;
                    pivot = pivot + 1;
                    if column_count == pivot {
                        pivot = pivot - 1;
                        break 'outer;
                    }
                }
            }
            for j in 0..row_count {
                let temp = result[(r, j)];
                result[(r, j)] = result[(i, j)];
                result[(i, j)] = temp;
            }
            let divisor = result[(r, pivot)];
            if divisor != T::default() {
                for j in 0..column_count {
                    result[(r, j)] = result[(r, j)] / divisor;
                }
            }
            for j in 0..row_count {
                if j != r {
                    let hold = result[(j, pivot)];
                    for k in 0..column_count {
                        result[(j, k)] = result[(j, k)] - (hold * result[(r, k)]);
                    }
                }
            }
            pivot = pivot + 1;
        }
        result
    }
}

/************************************************ * */
/*            Exercise 12 - Determinant            */
/************************************************ */

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Copy + Default + Mul + Num + Neg<Output = T> + AddAssign + Debug,
{
    /// Computes the determinant of the matrix.
    ///
    /// # Determinant in General
    ///
    /// The determinant is a scalar value that can be computed from the elements of a square matrix.
    /// It provides important properties about the matrix and the linear transformation it represents.
    /// In general, the determinant represents the scaling factor of the volume when the matrix is
    /// used as a linear transformation. It can be positive, negative, or zero, each with different
    /// implications:
    ///
    /// - **\(\det(A) = 0\)**:
    ///   - The matrix `A` is **singular** and does not have an inverse.
    ///   - The columns (or rows) of `A` are linearly dependent.
    ///   - The transformation collapses the space into a lower-dimensional subspace.
    ///   - Geometrically, it indicates that the volume of the transformed space is 0.
    ///
    /// - **\(\det(A) > 0\)**:
    ///   - The matrix `A` is **non-singular** and has an inverse.
    ///   - The transformation preserves the orientation of the space.
    ///   - Geometrically, it indicates a positive scaling factor of the volume.
    ///
    /// - **\(\det(A) < 0\)**:
    ///   - The matrix `A` is **non-singular** and has an inverse.
    ///   - The transformation reverses the orientation of the space.
    ///   - Geometrically, it indicates a negative scaling factor of the volume.
    ///
    /// # Example
    ///
    /// Consider a `2 x 2` matrix:
    ///
    /// ```text
    /// A = [
    ///   [1, 2],
    ///   [3, 4]
    /// ]
    /// ```
    ///
    /// The determinant is:
    ///
    /// ```text
    /// det(A) = 1 * 4 - 2 * 3 = 4 - 6 = -2
    /// ```
    ///
    /// This indicates that the transformation represented by `A` scales areas by a factor of 2 and
    /// reverses their orientation.
    ///
    /// # Panics
    ///
    /// Panics if the matrix size is larger than `4 x 4`.
    ///
    /// # Returns
    ///
    /// The determinant of the matrix.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 3, 3>::from([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);
    /// assert_eq!(a.determinant(), 0);
    /// ```
    pub fn determinant(&self) -> T {
        match M {
            1 => self[(0, 0)],
            2 => self[(0, 0)] * self[(1, 1)] - self[(0, 1)] * self[(1, 0)],
            3 => self.determinant_3x3(),
            4 => (0..4)
                .map(|i| {
                    let sign = if i % 2 == 0 { T::one() } else { -T::one() };
                    let cofactor = self.get_cofactor(0, i);
                    sign * self[(0, i)] * cofactor.determinant_3x3()
                })
                .fold(T::default(), |acc, x| acc + x),
            _ => panic!("Determinant not implemented for matrices larger than 4x4"),
        }
    }

    fn determinant_3x3(&self) -> T {
        self[(0, 0)] * (self[(1, 1)] * self[(2, 2)] - self[(1, 2)] * self[(2, 1)])
            - self[(0, 1)] * (self[(1, 0)] * self[(2, 2)] - self[(1, 2)] * self[(2, 0)])
            + self[(0, 2)] * (self[(1, 0)] * self[(2, 1)] - self[(1, 1)] * self[(2, 0)])
    }

    fn get_cofactor(&self, row: usize, col: usize) -> Matrix<T, 3, 3> {
        let mut cofactor_matrix = Matrix::<T, 3, 3>::zero();
        let mut row_index = 0;

        for r in 0..M {
            if r == row {
                continue;
            }
            let mut col_index = 0;
            for c in 0..N {
                if c == col {
                    continue;
                }
                cofactor_matrix[(row_index, col_index)] = self[(r, c)];
                col_index += 1;
            }
            row_index += 1;
        }
        cofactor_matrix
    }
}

/********************************************* */
/*            Exercise 12 - Inverse            */
/********************************************* */

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Copy + Default + Mul + Num + Neg<Output = T> + AddAssign + Debug + Float,
{
    /// Calculates the inverse of the matrix.
    ///
    /// This method supports matrices up to 3x3 in size.
    ///
    /// # Returns
    ///
    /// Returns `Ok(Matrix)` if the inverse exists, or an `Err` with a descriptive message if not.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<f64, 2, 2>::from([[1.0, 2.0], [3.0, 4.0]]);
    /// let inv = a.inverse().unwrap();
    /// // Check the result (approximate due to floating-point arithmetic)
    /// ```
    pub fn inverse(&self) -> Result<Self, &'static str> {
        if M != N {
            return Err("Matrix must be square to calculate inverse");
        }

        let det = self.determinant();

        if det == T::zero() {
            return Err("Matrix is singular and has no inverse");
        }

        let mut inv = Matrix::<T, N, M>::zero();
        for i in 0..M {
            for j in 0..N {
                let coffactor = match M {
                    2 => self.cofactor1x1(i, j).determinant(),
                    3 => self.cofactor2x2(i, j).determinant(),
                    _ => return Err("Inverse not implemented for matrices larger than 3x3"),
                };
                let base: i32 = -1;
                inv[(i, j)] = (coffactor * T::from(base.pow((i + j) as u32)).unwrap()) / det;
            }
        }
        let inv = inv.transpose();
        Ok(inv)
    }
}

/***************************************** */
/*            Exercise 13 - Rank            */
/***************************************** */

impl<T, const M: usize, const N: usize> Matrix<T, M, N>
where
    T: Copy + Default + Mul + Num + Neg<Output = T> + AddAssign + PartialEq,
{
    /// Calculates the rank of the matrix.
    ///
    /// The rank is determined by computing the row echelon form and counting non-zero rows.
    ///
    /// # Examples
    ///
    /// ```
    /// use mini_matrix::Matrix;
    ///
    /// let a = Matrix::<i32, 3, 3>::from([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);
    /// assert_eq!(a.rank(), 2);
    /// ```
    pub fn rank(&self) -> usize {
        let mut rank = M;
        let row_echelon = self.row_echelon();
        for i in 0..M {
            let mut is_zero = true;
            for j in 0..N {
                if row_echelon[(i, j)] != T::default() {
                    is_zero = false;
                    break;
                }
            }
            if is_zero {
                rank -= 1;
            }
        }
        rank
    }
}