1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
//! # Linked List
//!
//! Implements a simple linked list using Heap memory.
//! Currently, there's an implementation only for the i32 primitive type.
pub struct LinkedList<T> {
pub val: Option<T>,
pub next: Option<Box<LinkedList<T>>>,
}
pub struct PopLeftResult<T> {
pub val: Option<T>,
pub list: Option<Box<LinkedList<T>>>
}
impl LinkedList<i32> {
/// # Creates an empty LinkedList that may hold i32 values
///
/// # Example
/// ```
/// let list = mini_linked_list::LinkedList::<i32>::new();
/// ```
pub fn new() -> LinkedList<i32>{
LinkedList {
val: None,
next: None,
}
}
/// # Adds an element to the right side of the list
///
/// This method uses O(N) operations, as it needs to traverse
/// the entire list before appending the new value to the end of the list.
///
/// # Example
/// ```
/// let mut list = mini_linked_list::LinkedList::<i32>::new();
/// list.push_right(1);
/// list.push_right(2);
/// list.push_right(3);
/// list.push_right(4);
/// assert_eq!(list.collect(), vec![1,2,3,4]);
/// ```
pub fn push_right(&mut self, x: i32) {
let mut node = self;
while node.next.is_some() {
node = node.next.as_mut().unwrap();
}
node.next = Some(Box::new(LinkedList{
val: Some(x),
next: None,
}))
}
/// # Adds an element to the left side of the list
///
/// This method works in O(1) operation, as it replaces the head of the list
/// with a new one and no traversal thus is required.
///
/// The method returns the new memory address of the list that must be handled
/// by the caller (typically reassigning the variable).
///
/// # Example
/// ```
/// use mini_linked_list::LinkedList;
/// let mut list: LinkedList<i32> = LinkedList::<i32>::new();
/// list = list.push_left(1);
/// list = list.push_left(2);
/// list = list.push_left(3);
/// list = list.push_left(4);
/// assert_eq!(list.collect(), vec![4,3,2,1]);
/// ```
pub fn push_left(self, x: i32) -> LinkedList<i32>{
let node= LinkedList::<i32> {
val: Some(x),
next: Some(Box::new(self))
};
node
}
/// # Pops the List head on the left side, returning a PopLeftResult
///
/// This operation works in O(1), as it only pops the head and
/// no traversal is required.
///
/// It's usage is not so straightforward, however, as it requires
/// the caller to replace the reference to the list head with the
/// address returned by this method, inside `PopLeftResult.list`
///
/// It's advised to not call `unwrap` directly in `PopLeftResult.list``
/// directly, but rather rely on safer `Option` methods.
///
/// # Example
///
/// ```
/// use mini_linked_list::{LinkedList, PopLeftResult};
/// let mut list: LinkedList<i32> = LinkedList::<i32>::new();
/// list.push_right(1);
/// list.push_right(2);
///
/// let result: PopLeftResult<i32> = list.pop_left();
/// let list = result.list.unwrap();
///
/// assert_eq!(list.collect(), vec![2]);
/// assert_eq!(result.val.unwrap(), 1);
///
/// let result: PopLeftResult<i32> = list.pop_left();
/// let list = result.list;
///
/// assert_eq!(list.is_none(), true);
/// assert_eq!(result.val.unwrap(), 2);
/// ```
pub fn pop_left(self) -> PopLeftResult<i32> {
if self.val.is_some() {
return PopLeftResult { val: self.val, list: self.next }
}
match self.next {
Some(node) => PopLeftResult { val: node.val, list: node.next },
None => PopLeftResult { val: self.val, list: None }
}
}
/// # Pops the List head on the right side.
///
/// This operation works in O(N), as it requires a full traversal
/// of the list.
///
/// Whenever possible, prefer relying on the `pop_left` method, as it is more
/// efficient.
///
/// # Example
///
/// ```
/// use mini_linked_list::LinkedList;
/// let mut list: LinkedList<i32> = LinkedList::<i32>::new();
/// list.push_right(1);
/// list.push_right(2);
/// assert_eq!(list.pop_right().unwrap(), 2);
/// assert_eq!(list.pop_right().unwrap(), 1);
/// assert_eq!(list.pop_right().is_none(), true);
/// ```
pub fn pop_right(&mut self) -> Option<i32>{
let mut node: &mut Option<Box<LinkedList<i32>>> = &mut self.next;
let x: Option<i32>;
// no next node, need to try to pop self
if node.is_none() {
let val = self.val;
self.val = None;
return val
}
// only one next node, we should return it
if node.as_mut().unwrap().next.is_none() {
x = node.as_mut().unwrap().val;
node.as_mut().unwrap().next = None;
node.as_mut().unwrap().val = None;
return x;
}
// we can assume we have at least two valid next aheads
else {
while node.as_mut().unwrap().next.as_mut().unwrap().next.is_some() {
node = &mut node.as_mut().unwrap().next;
}
x = node.as_mut().unwrap().next.as_mut().unwrap().val;
node.as_mut().unwrap().next = None;
}
return x
}
/// # Collects the list into an Array
///
/// This method is used mostly for debugging and testing,
/// but can also be used to iterate over the list without popping
/// it's values.
///
/// It's not memory efficient, however, as it copies the entire
/// data.
///
/// # Example
/// ```
/// use mini_linked_list::LinkedList;
/// let mut list: LinkedList<i32> = LinkedList::<i32>::new();
/// list.push_right(1);
/// list.push_right(2);
/// assert_eq!(list.collect(), vec![1,2]);
/// ```
pub fn collect(&self) -> Vec<i32> {
let mut result = Vec::<i32>::new();
let mut node = self;
match node.val {
Some(val) => result.push(val),
_ => ()
}
while node.next.is_some() {
node = node.next.as_ref().unwrap();
match node.val {
Some(val) => result.push(val),
_ => ()
}
}
return result;
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_linked_list_push_right() {
let mut list: LinkedList<i32> = LinkedList::<i32>::new();
list.push_right(1);
list.push_right(2);
list.push_right(3);
list.push_right(4);
assert_eq!(list.collect(), vec![1,2,3,4]);
}
#[test]
fn test_linked_list_push_left() {
let mut list: LinkedList<i32> = LinkedList::<i32>::new();
list = list.push_left(1);
list = list.push_left(2);
list = list.push_left(3);
list = list.push_left(4);
assert_eq!(list.collect(), vec![4,3,2,1]);
}
#[test]
fn test_linked_list_pop_left() {
let mut list: LinkedList<i32> = LinkedList::<i32>::new();
list.push_right(1);
list.push_right(2);
list.push_right(3);
list.push_right(4);
let result = list.pop_left();
let list = result.list.unwrap();
assert_eq!(list.collect(), vec![2,3,4]);
assert_eq!(result.val.unwrap(), 1);
let result = list.pop_left();
let list = result.list.unwrap();
assert_eq!(list.collect(), vec![3,4]);
assert_eq!(result.val.unwrap(), 2);
let result = list.pop_left();
let list = result.list.unwrap();
assert_eq!(list.collect(), vec![4]);
assert_eq!(result.val.unwrap(), 3);
let result = list.pop_left();
assert_eq!(result.list.is_none(), true);
assert_eq!(result.val.unwrap(), 4);
}
#[test]
fn test_linked_list_pop_right() {
let mut list: LinkedList<i32> = LinkedList::<i32>::new();
list.push_right(1);
list.push_right(2);
list.push_right(3);
list.push_right(4);
assert_eq!(list.pop_right().unwrap(), 4);
assert_eq!(list.pop_right().unwrap(), 3);
assert_eq!(list.pop_right().unwrap(), 2);
assert_eq!(list.pop_right().unwrap(), 1);
assert_eq!(list.pop_right().is_none(), true);
}
#[test]
fn test_several_apis() {
let mut list: LinkedList<i32> = LinkedList::<i32>::new();
list.push_right(1);
list.push_right(2);
list.push_right(3);
list.push_right(4);
assert_eq!(list.collect(), vec![1,2,3,4]);
list = list.push_left(1);
list = list.push_left(2);
list = list.push_left(3);
list = list.push_left(4);
assert_eq!(list.collect(), vec![4,3,2,1,1,2,3,4]);
let x = list.pop_right();
assert_eq!(x.unwrap(), 4);
assert_eq!(list.collect(), vec![4,3,2,1,1,2,3]);
let result = list.pop_left();
let list = result.list.unwrap();
assert_eq!(list.collect(), vec![3,2,1,1,2,3]);
assert_eq!(result.val.unwrap(), 4);
}
}