1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
use core::{
ops::{Index, IndexMut},
ptr::NonNull,
};
use cranelift_entity::EntityRef;
use intrusive_collections::{
intrusive_adapter,
linked_list::{Cursor, CursorMut, LinkedList},
LinkedListLink, UnsafeRef,
};
use typed_arena::Arena;
/// This struct holds the data for each node in an ArenaMap/OrderedArenaMap
pub struct LayoutNode<K: EntityRef, V> {
pub link: LinkedListLink,
key: K,
value: V,
}
impl<K: EntityRef, V: Clone> Clone for LayoutNode<K, V> {
fn clone(&self) -> Self {
Self {
link: LinkedListLink::new(),
key: self.key,
value: self.value.clone(),
}
}
}
impl<K: EntityRef, V> LayoutNode<K, V> {
pub fn new(key: K, value: V) -> Self {
Self {
link: LinkedListLink::default(),
key,
value,
}
}
#[inline(always)]
pub fn key(&self) -> K {
self.key
}
#[inline(always)]
pub fn value(&self) -> &V {
&self.value
}
#[inline(always)]
pub fn value_mut(&mut self) -> &mut V {
&mut self.value
}
}
intrusive_adapter!(pub LayoutAdapter<K, V> = UnsafeRef<LayoutNode<K, V>>: LayoutNode<K, V> { link: LinkedListLink } where K: EntityRef);
/// ArenaMap provides similar functionality to other kinds of maps:
///
/// # Pros
///
/// * Once allocated, values stored in the map have a stable location, this can be useful for when
/// you
/// expect to store elements of the map in an intrusive collection.
/// * Keys can be more efficiently sized, i.e. rather than pointers/usize keys, you can choose
/// arbitrarily
/// small bitwidths, as long as there is sufficient keyspace for your use case.
/// * Attempt to keep data in the map as contiguous in memory as possible. This is again useful for
/// when
/// the data is also linked into an intrusive collection, like a linked list, where traversing the
/// list will end up visiting many of the nodes in the map. If each node was its own Box, this would
/// cause thrashing of the cache - ArenaMap sidesteps this by allocating values in chunks of memory
/// that are friendlier to the cache.
///
/// # Cons
///
/// * Memory allocated for data stored in the map is not released until the map is dropped. This is
/// a tradeoff made to ensure that the data has a stable location in memory, but the flip side of
/// that is increased memory usage for maps that stick around for a long time. In our case, these
/// maps are relatively short-lived, so it isn't a problem in practice.
/// * It doesn't provide as rich of an API as HashMap and friends
pub struct ArenaMap<K: EntityRef, V> {
keys: Vec<Option<NonNull<V>>>,
arena: Arena<V>,
_marker: core::marker::PhantomData<K>,
}
impl<K: EntityRef, V> Drop for ArenaMap<K, V> {
fn drop(&mut self) {
self.keys.clear()
}
}
impl<K: EntityRef, V: Clone> Clone for ArenaMap<K, V> {
fn clone(&self) -> Self {
let mut cloned = Self::new();
for opt in self.keys.iter() {
match opt {
None => cloned.keys.push(None),
Some(nn) => {
let value = unsafe { nn.as_ref() };
cloned.push(value.clone());
}
}
}
cloned
}
}
impl<K: EntityRef, V> Default for ArenaMap<K, V> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<K: EntityRef, V> ArenaMap<K, V> {
/// Creates a new, empty ArenaMap
pub fn new() -> Self {
Self {
arena: Arena::default(),
keys: vec![],
_marker: core::marker::PhantomData,
}
}
/// Returns true if this [ArenaMap] is empty
pub fn is_empty(&self) -> bool {
self.keys.is_empty()
}
/// Returns the total number of actively linked items in the map
pub fn len(&self) -> usize {
self.keys.iter().filter(|item| item.is_some()).count()
}
/// Returns true if this map contains `key`
pub fn contains(&self, key: K) -> bool {
self.keys.get(key.index()).map(|item| item.is_some()).unwrap_or(false)
}
/// Adds a new entry to the map, returning the key it is associated to
pub fn push(&mut self, value: V) -> K {
let key = self.alloc_key();
self.alloc_node(key, value);
key
}
/// Used in conjunction with `alloc_key` to associate data with the allocated key
pub fn append(&mut self, key: K, value: V) {
self.alloc_node(key, value);
}
/// Returns a reference to the value associated with the given key
pub fn get(&self, key: K) -> Option<&V> {
self.keys
.get(key.index())
.and_then(|item| item.map(|nn| unsafe { nn.as_ref() }))
}
/// Returns a mutable reference to the value associated with the given key
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
self.keys
.get_mut(key.index())
.and_then(|item| item.map(|mut nn| unsafe { nn.as_mut() }))
}
/// Returns a raw pointer to the value associated with the given key
///
/// # Safety
///
/// This function is unsafe, since the resulting pointer could outlive the arena itself,
/// or be used to incorrectly alias a value for which a mutable reference exists.
///
/// To safely use this function, callers must never construct a reference from the pointer
/// unless they can guarantee that the data pointed to is immutable, or can be safely accessed
/// using atomic operations. No other uses are permitted, unless you want to shoot yourself
/// in the foot.
pub unsafe fn get_raw(&self, key: K) -> Option<NonNull<V>> {
self.keys.get(key.index()).copied().and_then(|item| item)
}
/// Takes the value that was stored at the given key
pub fn take(&mut self, key: K) -> Option<NonNull<V>> {
self.keys[key.index()].take()
}
pub fn iter(&self) -> impl Iterator<Item = Option<NonNull<V>>> + '_ {
self.keys.iter().copied()
}
/// Removes the value associated with the given key
///
/// NOTE: This function will panic if the key is invalid/unbound
pub fn remove(&mut self, key: K) {
self.keys[key.index()].take();
}
pub fn alloc_key(&mut self) -> K {
let id = self.keys.len();
let key = K::new(id);
self.keys.push(None);
key
}
fn alloc_node(&mut self, key: K, value: V) -> NonNull<V> {
let len = key.index() + 1;
if len > self.keys.len() {
self.keys.resize(len, None);
}
let value = self.arena.alloc(value);
let nn = unsafe { NonNull::new_unchecked(value) };
self.keys[key.index()].replace(nn);
nn
}
}
impl<K: EntityRef, V> Index<K> for ArenaMap<K, V> {
type Output = V;
#[inline]
fn index(&self, index: K) -> &Self::Output {
self.get(index).unwrap()
}
}
impl<K: EntityRef, V> IndexMut<K> for ArenaMap<K, V> {
#[inline]
fn index_mut(&mut self, index: K) -> &mut Self::Output {
self.get_mut(index).unwrap()
}
}
/// OrderedArenaMap is an extension of ArenaMap that provides for arbitrary ordering of keys/values
///
/// This is done using an intrusive linked list alongside an ArenaMap. The list is used to link one
/// key/value pair to the next, so any ordering you wish to implement is possible. This is
/// particularly useful for layout of blocks in a function, or instructions within blocks, as you
/// can precisely position them relative to other blocks/instructions.
///
/// Because the linked list is intrusive, it is virtually free in terms of space, but comes with the
/// standard overhead for traversals. That said, there are a couple of niceties that give it good
/// overall performance:
///
/// * It is a doubly-linked list, so you can traverse equally efficiently front-to-back or
/// back-to-front,
/// * It has O(1) indexing; given a key, we can directly obtain a reference to a node, and with
/// that,
/// obtain a cursor over the list starting at that node.
pub struct OrderedArenaMap<K: EntityRef, V> {
list: LinkedList<LayoutAdapter<K, V>>,
map: ArenaMap<K, LayoutNode<K, V>>,
}
impl<K: EntityRef, V> Drop for OrderedArenaMap<K, V> {
fn drop(&mut self) {
self.list.fast_clear();
}
}
impl<K: EntityRef, V: Clone> Clone for OrderedArenaMap<K, V> {
fn clone(&self) -> Self {
let mut cloned = Self::new();
for opt in self.map.iter() {
match opt {
None => {
cloned.map.alloc_key();
}
Some(nn) => {
let value = unsafe { nn.as_ref() }.value();
cloned.push(value.clone());
}
}
}
cloned
}
}
impl<K: EntityRef, V> Default for OrderedArenaMap<K, V> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<K: EntityRef, V> OrderedArenaMap<K, V> {
pub fn new() -> Self {
Self {
map: ArenaMap::new(),
list: LinkedList::new(LayoutAdapter::new()),
}
}
/// Returns true if this [OrderedArenaMap] is empty
pub fn is_empty(&self) -> bool {
self.list.is_empty()
}
/// Returns the total number of actively linked items in the map
pub fn len(&self) -> usize {
self.list.iter().count()
}
/// Returns true if this map contains the given key and its value has been linked
#[inline]
pub fn contains(&self, key: K) -> bool {
if let Some(node) = self.map.get(key) {
node.link.is_linked()
} else {
false
}
}
/// Returns a reference to the value associated with the given key, if present and linked
pub fn get(&self, key: K) -> Option<&V> {
let node = self.map.get(key)?;
if node.link.is_linked() {
Some(node.value())
} else {
None
}
}
/// Returns a mutable reference to the value associated with the given key, if present and
/// linked
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
let node = self.map.get_mut(key)?;
if node.link.is_linked() {
Some(node.value_mut())
} else {
None
}
}
/// Allocates a key, but does not link the data
#[inline]
pub fn create(&mut self) -> K {
self.map.alloc_key()
}
/// Used with `create` when ready to associate data with the allocated key, linking it in to the
/// end of the list
pub fn append(&mut self, key: K, value: V) {
debug_assert!(!self.contains(key));
let data = self.alloc_node(key, value);
self.list.push_back(data);
}
/// Like `append`, but inserts the node before `before` in the list
///
/// NOTE: This function will panic if `before` is not present in the list
pub fn insert_before(&mut self, key: K, before: K, value: V) {
let value_opt = self.get_mut(key);
debug_assert!(value_opt.is_none());
let data = self.alloc_node(key, value);
let mut cursor = self.cursor_mut_at(before);
cursor.insert_before(data);
}
/// Like `append`, but inserts the node after `after` in the list
///
/// NOTE: This function will panic if `after` is not present in the list
pub fn insert_after(&mut self, key: K, after: K, value: V) {
let value_opt = self.get_mut(key);
debug_assert!(value_opt.is_none());
let data = self.alloc_node(key, value);
let mut cursor = self.cursor_mut_at(after);
cursor.insert_after(data);
}
/// Allocates a key and links data in the same operation
pub fn push(&mut self, value: V) -> K {
let key = self.alloc_key();
self.append(key, value);
key
}
/// Like `push`, but inserts the node after `after` in the list
///
/// NOTE: This function will panic if `after` is not present in the list
pub fn push_after(&mut self, after: K, value: V) -> K {
let key = self.alloc_key();
self.insert_after(key, after, value);
key
}
/// Unlinks the value associated with the given key from this map
///
/// NOTE: Removal does not result in deallocation of the underlying data, this
/// happens when the map is dropped. To perform early garbage collection, you can
/// clone the map, and drop the original.
pub fn remove(&mut self, key: K) {
if let Some(value) = self.map.get(key) {
assert!(value.link.is_linked(), "cannot remove a value that is not linked");
let mut cursor = unsafe { self.list.cursor_mut_from_ptr(value) };
cursor.remove();
}
}
/// Returns the first node in the map
pub fn first(&self) -> Option<&LayoutNode<K, V>> {
self.list.front().get()
}
/// Returns the last node in the map
pub fn last(&self) -> Option<&LayoutNode<K, V>> {
self.list.back().get()
}
/// Returns a cursor which can be used to traverse the map in order (front to back)
pub fn cursor(&self) -> Cursor<'_, LayoutAdapter<K, V>> {
self.list.front()
}
/// Returns a cursor which can be used to traverse the map mutably, in order (front to back)
pub fn cursor_mut(&mut self) -> CursorMut<'_, LayoutAdapter<K, V>> {
self.list.front_mut()
}
/// Returns a cursor which can be used to traverse the map in order (front to back), starting
/// at the key given.
pub fn cursor_at(&self, key: K) -> Cursor<'_, LayoutAdapter<K, V>> {
let ptr = &self.map[key] as *const LayoutNode<K, V>;
unsafe { self.list.cursor_from_ptr(ptr) }
}
/// Returns a cursor which can be used to traverse the map mutably, in order (front to back),
/// starting at the key given.
pub fn cursor_mut_at(&mut self, key: K) -> CursorMut<'_, LayoutAdapter<K, V>> {
let ptr = &self.map[key] as *const LayoutNode<K, V>;
unsafe { self.list.cursor_mut_from_ptr(ptr) }
}
/// Returns an iterator over the key/value pairs in the map.
///
/// The iterator is double-ended, so can be used to traverse the map front-to-back, or
/// back-to-front
pub fn iter(&self) -> OrderedArenaMapIter<'_, K, V> {
OrderedArenaMapIter(self.list.iter())
}
/// Returns an iterator over the keys in the map, in order (front to back)
pub fn keys(&self) -> impl Iterator<Item = K> + '_ {
self.list.iter().map(|item| item.key())
}
/// Returns an iterator over the values in the map, in order (front to back)
pub fn values(&self) -> impl Iterator<Item = &V> {
self.list.iter().map(|item| item.value())
}
#[inline]
fn alloc_key(&mut self) -> K {
self.map.alloc_key()
}
fn alloc_node(&mut self, key: K, value: V) -> UnsafeRef<LayoutNode<K, V>> {
let nn = self.map.alloc_node(key, LayoutNode::new(key, value));
unsafe { UnsafeRef::from_raw(nn.as_ptr()) }
}
}
impl<K: EntityRef, V> Index<K> for OrderedArenaMap<K, V> {
type Output = V;
#[inline]
fn index(&self, index: K) -> &Self::Output {
self.map[index].value()
}
}
impl<K: EntityRef, V> IndexMut<K> for OrderedArenaMap<K, V> {
#[inline]
fn index_mut(&mut self, index: K) -> &mut Self::Output {
self.map.get_mut(index).unwrap().value_mut()
}
}
pub struct OrderedArenaMapIter<'a, K, V>(
intrusive_collections::linked_list::Iter<'a, LayoutAdapter<K, V>>,
)
where
K: EntityRef;
impl<'a, K, V> Iterator for OrderedArenaMapIter<'a, K, V>
where
K: EntityRef,
{
type Item = (K, &'a V);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|item| (item.key(), item.value()))
}
}
impl<'a, K, V> DoubleEndedIterator for OrderedArenaMapIter<'a, K, V>
where
K: EntityRef,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back().map(|item| (item.key(), item.value()))
}
}