1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
use alloc::{alloc::Layout, collections::BTreeMap};
use core::{
fmt::{self, Write},
hash::{Hash, Hasher},
};
use cranelift_entity::entity_impl;
use intrusive_collections::{intrusive_adapter, LinkedList, LinkedListLink};
use crate::{
diagnostics::{miette, Diagnostic, Spanned},
*,
};
/// The policy to apply to a global variable (or function) when linking
/// together a program during code generation.
///
/// Miden doesn't (currently) have a notion of a symbol table for things like global variables.
/// At runtime, there are not actually symbols at all in any familiar sense, instead functions,
/// being the only entities with a formal identity in MASM, are either inlined at all their call
/// sites, or are referenced by the hash of their MAST root, to be unhashed at runtime if the call
/// is executed.
///
/// Because of this, and because we cannot perform linking ourselves (we must emit separate modules,
/// and leave it up to the VM to link them into the MAST), there are limits to what we can do in
/// terms of linking function symbols. We essentially just validate that given a set of modules in
/// a [Program], that there are no invalid references across modules to symbols which either don't
/// exist, or which exist, but have internal linkage.
///
/// However, with global variables, we have a bit more freedom, as it is a concept that we are
/// completely inventing from whole cloth without explicit support from the VM or Miden Assembly.
/// In short, when we compile a [Program] to MASM, we first gather together all of the global
/// variables into a program-wide table, merging and garbage collecting as appropriate, and updating
/// all references to them in each module. This global variable table is then assumed to be laid out
/// in memory starting at the base of the linear memory address space in the same order, with
/// appropriate padding to ensure accesses are aligned. Then, when emitting MASM instructions which
/// reference global values, we use the layout information to derive the address where that global
/// value is allocated.
///
/// This has some downsides however, the biggest of which is that we can't prevent someone from
/// loading modules generated from a [Program] with either their own hand-written modules, or
/// even with modules from another [Program]. In such cases, assumptions about the allocation of
/// linear memory from different sets of modules will almost certainly lead to undefined behavior.
/// In the future, we hope to have a better solution to this problem, preferably one involving
/// native support from the Miden VM itself. For now though, we're working with what we've got.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Default)]
pub enum Linkage {
/// This symbol is only visible in the containing module.
///
/// Internal symbols may be renamed to avoid collisions
///
/// Unreferenced internal symbols can be discarded at link time.
Internal,
/// This symbol will be linked using the "one definition rule", i.e. symbols with
/// the same name, type, and linkage will be merged into a single definition.
///
/// Unlike `internal` linkage, unreferenced `odr` symbols cannot be discarded.
///
/// NOTE: `odr` symbols cannot satisfy external symbol references
Odr,
/// This symbol is visible externally, and can be used to resolve external symbol references.
#[default]
External,
}
impl fmt::Display for Linkage {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Internal => f.write_str("internal"),
Self::Odr => f.write_str("odr"),
Self::External => f.write_str("external"),
}
}
}
intrusive_adapter!(pub GlobalVariableAdapter = UnsafeRef<GlobalVariableData>: GlobalVariableData { link: LinkedListLink });
/// This error is raised when attempting to declare [GlobalVariableData]
/// with a conflicting symbol name and/or linkage.
///
/// For example, two global variables with the same name, but differing
/// types will result in this error, as there is no way to resolve the
/// conflict.
#[derive(Debug, thiserror::Error, Diagnostic)]
pub enum GlobalVariableError {
/// There are multiple conflicting definitions of the given global symbol
#[error(
"invalid global variable: there are multiple conflicting definitions for symbol '{0}'"
)]
#[diagnostic()]
NameConflict(Ident),
/// An attempt was made to set the initializer for a global that already has one
#[error("cannot set an initializer for '{0}', it is already initialized")]
#[diagnostic()]
AlreadyInitialized(Ident),
/// The initializer data is invalid for the declared type of the given global, e.g. size
/// mismatch.
#[error(
"invalid global variable initializer for '{0}': the data does not match the declared type"
)]
#[diagnostic()]
InvalidInit(Ident),
}
/// Describes the way in which global variable conflicts will be handled
#[derive(Debug, Copy, Clone, PartialEq, Eq, Default)]
pub enum ConflictResolutionStrategy {
/// Do not attempt to resolve conflicts
///
/// NOTE: This does not change the behavior of "one definition rule" linkage,
/// when the globals have identical definitions.
None,
/// Attempt to resolve conflicts by renaming symbols with `internal` linkage.
#[default]
Rename,
}
/// This table is used to lay out and link together global variables for a [Program].
///
/// See the docs for [Linkage], [GlobalVariableData], and [GlobalVariableTable::declare] for more
/// details.
pub struct GlobalVariableTable {
layout: LinkedList<GlobalVariableAdapter>,
names: BTreeMap<Ident, GlobalVariable>,
arena: ArenaMap<GlobalVariable, GlobalVariableData>,
data: ConstantPool,
next_unique_id: usize,
conflict_strategy: ConflictResolutionStrategy,
}
impl Default for GlobalVariableTable {
fn default() -> Self {
Self::new(Default::default())
}
}
impl GlobalVariableTable {
pub fn new(conflict_strategy: ConflictResolutionStrategy) -> Self {
Self {
layout: Default::default(),
names: Default::default(),
arena: Default::default(),
data: ConstantPool::default(),
next_unique_id: 0,
conflict_strategy,
}
}
/// Returns the number of global variables in this table
pub fn len(&self) -> usize {
self.layout.iter().count()
}
/// Returns true if the global variable table is empty
pub fn is_empty(&self) -> bool {
self.layout.is_empty()
}
/// Get a double-ended iterator over the current table layout
pub fn iter<'a, 'b: 'a>(
&'b self,
) -> intrusive_collections::linked_list::Iter<'a, GlobalVariableAdapter> {
self.layout.iter()
}
/// Returns true if a global variable with `name` has been declared
pub fn exists(&self, name: Ident) -> bool {
self.names.contains_key(&name)
}
/// Looks up a [GlobalVariable] by name.
pub fn find(&self, name: Ident) -> Option<GlobalVariable> {
self.names.get(&name).copied()
}
/// Gets the data associated with the given [GlobalVariable]
pub fn get(&self, id: GlobalVariable) -> &GlobalVariableData {
&self.arena[id]
}
/// Checks if the given `id` can be found in this table
pub fn contains_key(&self, id: GlobalVariable) -> bool {
self.arena.contains(id)
}
/// Removes the global variable associated with `id` from this table
///
/// The actual definition remains behind, in order to ensure that `id`
/// remains valid should there be any other outstanding references,
/// however the data is removed from the layout, and will not be
/// seen when traversing the table.
pub fn remove(&mut self, id: GlobalVariable) {
let mut cursor = self.layout.front_mut();
while let Some(gv) = cursor.get() {
if gv.id == id {
cursor.remove();
return;
}
cursor.move_next();
}
}
/// Computes the total size in bytes of the table, as it is currently laid out.
pub fn size_in_bytes(&self) -> usize {
// We mimic the allocation process here, by visiting each
// global variable, padding the current heap pointer as necessary
// to provide the necessary minimum alignment for the value, and
// then bumping it by the size of the value itself.
//
// At the end, the effective address of the pointer is the total
// size in bytes of the allocation
let mut size = 0;
for gv in self.layout.iter() {
let layout = gv.layout();
size += layout.size().align_up(layout.align());
}
size
}
/// Computes the offset, in bytes, of the given [GlobalVariable] from the
/// start of the segment in which globals are allocated, assuming that the
/// layout of the global variable table up to and including `id` remains
/// unchanged.
///
/// # Safety
///
/// This should only be used once all data segments and global variables have
/// been declared, and the layout of the table has been decided. It is technically
/// safe to use offsets obtained before all global variables are declared, _IF_ the
/// data segments and global variable layout up to and including those global variables
/// remains unchanged after that point.
///
/// If the offset for a given global variable is obtained, and the heap layout is
/// subsequently changed in such a way that the original offset is no longer
/// accurate, bad things will happen.
pub unsafe fn offset_of(&self, id: GlobalVariable) -> u32 {
let mut size = 0usize;
for gv in self.layout.iter() {
let layout = gv.layout();
let align_offset = layout.size().align_offset(layout.align());
size += align_offset;
// If the current variable is the one we're after,
// the aligned address is the offset to the start
// of the allocation, so we're done
if gv.id == id {
break;
}
size += layout.size();
}
size.try_into().expect("data segment table is invalid")
}
/// Get the constant data associated with `id`
pub fn get_constant(&self, id: Constant) -> &ConstantData {
self.data.get(id)
}
/// Inserts the given constant data into this table without allocating a global
pub fn insert_constant(&mut self, data: ConstantData) -> Constant {
self.data.insert(data)
}
/// Returns true if the given constant data is in the constant pool
pub fn contains_constant(&self, data: &ConstantData) -> bool {
self.data.contains(data)
}
/// Traverse all of the constants in the table
#[inline]
pub fn constants(&self) -> impl Iterator<Item = (Constant, &ConstantData)> {
self.data.iter()
}
/// Returns true if the table has constant data stored
pub fn has_constants(&self) -> bool {
!self.data.is_empty()
}
/// Declares a new global variable with the given symbol name, type, linkage, and optional
/// initializer.
///
/// If successful, `Ok` is returned, with the [GlobalVariable] corresponding to the data for the
/// symbol.
///
/// Returns an error if the specification of the global is invalid in any way, or the
/// declaration conflicts with a previous declaration of the same name.
///
/// NOTE: While similar to `try_insert`, a key difference is that `try_declare` does not attempt
/// to resolve conflicts. If the given name has been previously declared, and the
/// declarations are not identical, then an error will be returned. This is because conflict
/// resolution is a process performed when linking together modules. Declaring globals is
/// done during the initial construction of a module, where any attempt to rename a global
/// variable locally would cause unexpected issues as references to that global are emitted.
/// Once a module is constructed, globals it declares with internal linkage can be renamed
/// freely, as the name is no longer significant.
pub fn declare(
&mut self,
name: Ident,
ty: Type,
linkage: Linkage,
init: Option<ConstantData>,
) -> Result<GlobalVariable, GlobalVariableError> {
assert_ne!(
name.as_symbol(),
symbols::Empty,
"global variable declarations require a non-empty symbol name"
);
// Validate the initializer
let init = match init {
None => None,
Some(init) => {
let layout = ty.layout();
if init.len() > layout.size() {
return Err(GlobalVariableError::InvalidInit(name));
}
Some(self.data.insert(init))
}
};
let data = GlobalVariableData {
link: Default::default(),
id: Default::default(),
name,
ty,
linkage,
init,
};
// If the symbol is already declared, but the declarations are compatible, then
// return the id of the existing declaration. If the declarations are incompatible,
// then we raise an error.
//
// If the symbol is not declared yet, proceed with insertion.
if let Some(gv) = self.names.get(&data.name).copied() {
if data.is_compatible_with(&self.arena[gv]) {
// If the declarations are compatible, and the new declaration has an initializer,
// then the previous declaration must either have no initializer, or the same one,
// but we want to make sure that the initializer is set if not already.
if data.init.is_some() {
self.arena[gv].init = data.init;
}
Ok(gv)
} else {
Err(GlobalVariableError::NameConflict(data.name))
}
} else {
Ok(unsafe { self.insert(data) })
}
}
/// Attempt to insert the given [GlobalVariableData] into this table.
///
/// Returns the id of the global variable in the table, along with a flag indicating whether the
/// global symbol was renamed to resolve a conflict with an existing symbol. The caller is
/// expected to handle such renames so that any references to the original name that are
/// affected can be updated.
///
/// If there was an unresolvable conflict, an error will be returned.
pub fn try_insert(
&mut self,
mut data: GlobalVariableData,
) -> Result<(GlobalVariable, bool), GlobalVariableError> {
assert_ne!(
data.name.as_symbol(),
symbols::Empty,
"global variable declarations require a non-empty symbol name"
);
if let Some(gv) = self.names.get(&data.name).copied() {
// The symbol is already declared, check to see if they are compatible
if data.is_compatible_with(&self.arena[gv]) {
// If the declarations are compatible, and the new declaration has an initializer,
// then the previous declaration must either have no initializer, or the same one,
// but we make sure that the initializer is set.
if data.init.is_some() {
self.arena[gv].init = data.init;
}
return Ok((gv, false));
}
// Otherwise, the declarations conflict, but depending on the conflict resolution
// strategy, we may yet be able to proceed.
let rename_internal_symbols =
matches!(self.conflict_strategy, ConflictResolutionStrategy::Rename);
match data.linkage {
// Conflicting declarations with internal linkage can be resolved by renaming
Linkage::Internal if rename_internal_symbols => {
let mut generated = String::from(data.name.as_str());
let original_len = generated.len();
loop {
// Allocate a new unique integer value to mix into the hash
let unique_id = self.next_unique_id;
self.next_unique_id += 1;
// Calculate the hash of the global variable data
let mut hasher = rustc_hash::FxHasher::default();
data.hash(&mut hasher);
unique_id.hash(&mut hasher);
let hash = hasher.finish();
// Append `.<hash>` as a suffix to the original symbol name
write!(&mut generated, ".{:x}", hash)
.expect("failed to write unique suffix to global variable name");
// If by some stroke of bad luck we generate a symbol name that
// is in use, try again with a different unique id until we find
// an unused name
if !self.names.contains_key(generated.as_str()) {
data.name =
Ident::new(Symbol::intern(generated.as_str()), data.name.span());
break;
}
// Strip off the suffix we just added before we try again
generated.truncate(original_len);
}
let gv = unsafe { self.insert(data) };
Ok((gv, true))
}
// In all other cases, a conflicting declaration cannot be resolved
Linkage::External | Linkage::Internal | Linkage::Odr => {
Err(GlobalVariableError::NameConflict(data.name))
}
}
} else {
let gv = unsafe { self.insert(data) };
Ok((gv, false))
}
}
/// This sets the initializer for the given [GlobalVariable] to `init`.
///
/// This function will return `Err` if any of the following occur:
///
/// * The global variable already has an initializer
/// * The given data does not match the type of the global variable, i.e. more data than the
/// type supports.
///
/// If the data is smaller than the type of the global variable, the data will be zero-extended
/// to fill it out.
///
/// NOTE: The initializer data is expected to be in little-endian order.
pub fn set_initializer(
&mut self,
gv: GlobalVariable,
init: ConstantData,
) -> Result<(), GlobalVariableError> {
let global = &mut self.arena[gv];
let layout = global.layout();
if init.len() > layout.size() {
return Err(GlobalVariableError::InvalidInit(global.name));
}
match global.init {
// If the global is uninitialized, we're good to go
None => {
global.init = Some(self.data.insert(init));
}
// If it is already initialized, but the initializers are the
// same, then we consider this a successful, albeit redundant,
// operation; otherwise we raise an error.
Some(prev_init) => {
let prev = self.data.get(prev_init);
if prev != &init {
return Err(GlobalVariableError::AlreadyInitialized(global.name));
}
}
}
Ok(())
}
/// This is a low-level operation to insert global variable data directly into the table,
/// allocating a fresh unique id, which is then returned.
///
/// # SAFETY
///
/// It is expected that the caller has already guaranteed that the name of the given global
/// variable is not present in the table, and that all validation rules for global variables
/// have been enforced.
pub(crate) unsafe fn insert(&mut self, mut data: GlobalVariableData) -> GlobalVariable {
let name = data.name;
// Allocate the data in the arena
let gv = if data.id == GlobalVariable::default() {
let gv = self.arena.alloc_key();
data.id = gv;
gv
} else {
data.id
};
self.arena.append(gv, data);
// Add the symbol name to the symbol map
self.names.insert(name, gv);
// Add the global variable to the layout
let unsafe_ref = unsafe {
let ptr = self.arena.get_raw(gv).unwrap();
UnsafeRef::from_raw(ptr.as_ptr())
};
self.layout.push_back(unsafe_ref);
gv
}
}
impl fmt::Debug for GlobalVariableTable {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.layout.iter()).finish()
}
}
/// A handle to a global variable definition
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct GlobalVariable(u32);
entity_impl!(GlobalVariable, "gvar");
impl Default for GlobalVariable {
#[inline]
fn default() -> Self {
use cranelift_entity::packed_option::ReservedValue;
Self::reserved_value()
}
}
/// A [GlobalVariable] represents a concrete definition for a symbolic value,
/// i.e. it corresponds to the actual allocated memory referenced by a [GlobalValueData::Symbol]
/// value.
#[derive(Clone)]
pub struct GlobalVariableData {
/// The intrusive link used for storing this global variable in a list
link: LinkedListLink,
/// The unique identifier associated with this global variable
id: GlobalVariable,
/// The symbol name for this global variable
pub name: Ident,
/// The type of the value this variable is allocated for.
///
/// Nothing prevents one from accessing the variable as if it is
/// another type, but at a minimum this type is used to derive the
/// size and alignment requirements for this global variable on
/// the heap.
pub ty: Type,
/// The linkage for this global variable
pub linkage: Linkage,
/// The initializer for this global variable, if applicable
pub init: Option<Constant>,
}
impl GlobalVariableData {
pub(crate) fn new(
id: GlobalVariable,
name: Ident,
ty: Type,
linkage: Linkage,
init: Option<Constant>,
) -> Self {
Self {
link: LinkedListLink::new(),
id,
name,
ty,
linkage,
init,
}
}
/// Get the unique identifier assigned to this global variable
#[inline]
pub fn id(&self) -> GlobalVariable {
self.id
}
/// Return the [Layout] of this global variable in memory
pub fn layout(&self) -> Layout {
self.ty.layout()
}
/// Return a handle to the initializer for this global variable, if present
pub fn initializer(&self) -> Option<Constant> {
self.init
}
/// Returns true if `self` is compatible with `other`, meaning that the two declarations are
/// identical in terms of type and linkage, and do not have conflicting initializers.
///
/// NOTE: The name of the global is not considered here, only the properties of the value
/// itself.
pub fn is_compatible_with(&self, other: &Self) -> bool {
let compatible_init =
self.init.is_none() || other.init.is_none() || self.init == other.init;
self.ty == other.ty && self.linkage == other.linkage && compatible_init
}
}
impl Eq for GlobalVariableData {}
impl PartialEq for GlobalVariableData {
fn eq(&self, other: &Self) -> bool {
self.linkage == other.linkage
&& self.ty == other.ty
&& self.name == other.name
&& self.init == other.init
}
}
impl Hash for GlobalVariableData {
fn hash<H: Hasher>(&self, state: &mut H) {
self.name.hash(state);
self.ty.hash(state);
self.linkage.hash(state);
self.init.hash(state);
}
}
impl fmt::Debug for GlobalVariableData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("GlobalVariableData")
.field("id", &self.id)
.field("name", &self.name)
.field("ty", &self.ty)
.field("linkage", &self.linkage)
.field("init", &self.init)
.finish()
}
}
impl formatter::PrettyPrint for GlobalVariableData {
fn render(&self) -> formatter::Document {
use crate::formatter::*;
let name = if matches!(self.linkage, Linkage::Internal) {
display(self.name)
} else {
const_text("(")
+ const_text("export")
+ const_text(" ")
+ display(self.name)
+ const_text(")")
};
let doc = const_text("(")
+ const_text("global")
+ const_text(" ")
+ name
+ const_text(" ")
+ const_text("(")
+ const_text("id")
+ const_text(" ")
+ display(self.id.as_u32())
+ const_text(")")
+ const_text(" ")
+ const_text("(")
+ const_text("type")
+ const_text(" ")
+ text(format!("{}", &self.ty))
+ const_text(")");
if let Some(init) = self.init {
doc + const_text(" ")
+ const_text("(")
+ const_text("const")
+ const_text(" ")
+ display(init.as_u32())
+ const_text(")")
+ const_text(")")
} else {
doc + const_text(")")
}
}
}
/// A handle to a global variable definition
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct GlobalValue(u32);
entity_impl!(GlobalValue, "gv");
impl Default for GlobalValue {
#[inline]
fn default() -> Self {
use cranelift_entity::packed_option::ReservedValue;
Self::reserved_value()
}
}
/// Data associated with a `GlobalValue`.
///
/// Globals are allocated statically, and live for the lifetime of the program.
/// In Miden, we allocate globals at the start of the heap. Since all globals are
/// known statically, we instructions which manipulate globals are converted to
/// loads/stores using constant addresses when translated to MASM.
///
/// Like other entities, globals may also have a [crate::diagnostics::SourceSpan] associated with
/// them.
#[derive(Debug, Clone)]
pub enum GlobalValueData {
/// A symbolic reference to a global variable symbol
///
/// The type of a symbolic global value is always a pointer, the address
/// of the referenced global variable.
Symbol {
/// The name of the global variable that is referenced
name: Ident,
/// A constant offset, in bytes, from the address of the symbol
offset: i32,
},
/// A global whose value is given by reading the value from the address
/// derived from another global value and an offset.
Load {
/// The global value whose value is the base pointer
base: GlobalValue,
/// A constant offset, in bytes, from the base address
offset: i32,
/// The type of the value stored at `base + offset`
ty: Type,
},
/// A global whose value is an address computed as the offset from another global
///
/// This can be used for `getelementptr`-like situations, such as calculating the
/// address of a field in a struct that is stored in a global variable.
IAddImm {
/// The global value whose value is the base pointer
base: GlobalValue,
/// A constant offset, in units of `ty`, from the base address
offset: i32,
/// The unit type of the offset
///
/// This can be helpful when computing addresses to elements of an array
/// stored in a global variable.
ty: Type,
},
}
impl GlobalValueData {
/// Returns true if this global value is a symbolic or computed address
/// which can be resolved at compile-time.
///
/// Notably, global loads may produce an address, but the value of that
/// address is not known until runtime.
pub fn is_constant_addr(&self) -> bool {
!matches!(self, Self::Load { .. })
}
/// Return the computed offset for this global value (relative to it's position in the global
/// table)
pub fn offset(&self) -> i32 {
match self {
Self::Symbol { offset, .. } => *offset,
Self::Load { offset, .. } => *offset,
Self::IAddImm { ref ty, offset, .. } => {
let offset = *offset as usize * ty.size_in_bytes();
offset
.try_into()
.expect("invalid iadd expression: expected computed offset to fit in i32 range")
}
}
}
/// Get the type associated with this value, if applicable
pub fn ty(&self) -> Option<&Type> {
match self {
Self::Symbol { .. } => None,
Self::Load { ref ty, .. } => Some(ty),
Self::IAddImm { ref ty, .. } => Some(ty),
}
}
pub(crate) fn render(&self, dfg: &DataFlowGraph) -> formatter::Document {
use crate::formatter::*;
match self {
Self::Symbol { name, offset } => {
let offset = *offset;
let offset = if offset == 0 {
None
} else {
Some(
const_text("(")
+ const_text("offset")
+ const_text(" ")
+ display(offset)
+ const_text(")"),
)
};
const_text("(")
+ const_text("global.symbol")
+ const_text(" ")
+ display(*name)
+ offset.map(|offset| const_text(" ") + offset).unwrap_or_default()
+ const_text(")")
}
Self::Load { base, offset, ty } => {
let offset = *offset;
let offset = if offset == 0 {
None
} else {
Some(
const_text("(")
+ const_text("offset")
+ const_text(" ")
+ display(offset)
+ const_text(")"),
)
};
const_text("(")
+ const_text("global.load")
+ const_text(" ")
+ text(format!("{}", ty))
+ offset.map(|offset| const_text(" ") + offset).unwrap_or_default()
+ const_text(" ")
+ dfg.global_value(*base).render(dfg)
+ const_text(")")
}
Self::IAddImm { base, offset, ty } => {
const_text("(")
+ const_text("global.iadd")
+ const_text(" ")
+ const_text("(")
+ const_text("offset")
+ const_text(" ")
+ display(*offset)
+ const_text(" ")
+ const_text(".")
+ const_text(" ")
+ text(format!("{}", ty))
+ const_text(")")
+ const_text(" ")
+ dfg.global_value(*base).render(dfg)
+ const_text(")")
}
}
}
}